Suppr超能文献

基于图神经网络的多类型特征融合用于药物-药物相互作用预测。

Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.

机构信息

College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

出版信息

BMC Bioinformatics. 2022 Jun 10;23(1):224. doi: 10.1186/s12859-022-04763-2.

Abstract

BACKGROUND

Drug-Drug interactions (DDIs) are a challenging problem in drug research. Drug combination therapy is an effective solution to treat diseases, but it can also cause serious side effects. Therefore, DDIs prediction is critical in pharmacology. Recently, researchers have been using deep learning techniques to predict DDIs. However, these methods only consider single information of the drug and have shortcomings in robustness and scalability.

RESULTS

In this paper, we propose a multi-type feature fusion based on graph neural network model (MFFGNN) for DDI prediction, which can effectively fuse the topological information in molecular graphs, the interaction information between drugs and the local chemical context in SMILES sequences. In MFFGNN, to fully learn the topological information of drugs, we propose a novel feature extraction module to capture the global features for the molecular graph and the local features for each atom of the molecular graph. In addition, in the multi-type feature fusion module, we use the gating mechanism in each graph convolution layer to solve the over-smoothing problem during information delivery. We perform extensive experiments on multiple real datasets. The results show that MFFGNN outperforms some state-of-the-art models for DDI prediction. Moreover, the cross-dataset experiment results further show that MFFGNN has good generalization performance.

CONCLUSIONS

Our proposed model can efficiently integrate the information from SMILES sequences, molecular graphs and drug-drug interaction networks. We find that a multi-type feature fusion model can accurately predict DDIs. It may contribute to discovering novel DDIs.

摘要

背景

药物-药物相互作用(DDI)是药物研究中的一个具有挑战性的问题。药物联合治疗是治疗疾病的有效方法,但也会引起严重的副作用。因此,DDI 预测在药理学中至关重要。最近,研究人员一直在使用深度学习技术来预测 DDI。然而,这些方法仅考虑药物的单一信息,在鲁棒性和可扩展性方面存在不足。

结果

在本文中,我们提出了一种基于图神经网络模型的多类型特征融合(MFFGNN)方法,用于 DDI 预测,该方法可以有效地融合分子图中的拓扑信息、药物之间的相互作用信息以及 SMILES 序列中的局部化学环境信息。在 MFFGNN 中,为了充分学习药物的拓扑信息,我们提出了一种新的特征提取模块,用于捕获分子图的全局特征和分子图中每个原子的局部特征。此外,在多类型特征融合模块中,我们使用每个图卷积层中的门控机制来解决信息传递过程中的过平滑问题。我们在多个真实数据集上进行了广泛的实验。结果表明,MFFGNN 在 DDI 预测方面优于一些最先进的模型。此外,跨数据集实验结果进一步表明,MFFGNN 具有良好的泛化性能。

结论

我们提出的模型可以有效地整合来自 SMILES 序列、分子图和药物-药物相互作用网络的信息。我们发现,多类型特征融合模型可以准确预测 DDI。它可能有助于发现新的 DDI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcd/9188183/c8aa530c24b9/12859_2022_4763_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验