Suppr超能文献

阿尔茨海默病中的突触代偿性可塑性。

Synaptic Compensatory Plasticity in Alzheimer's Disease.

机构信息

Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia.

UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4SB, United Kingdom.

出版信息

J Neurosci. 2023 Oct 11;43(41):6833-6840. doi: 10.1523/JNEUROSCI.0379-23.2023.

Abstract

The loss of excitatory synapses is known to underlie the cognitive deficits in Alzheimer's disease (AD). Although much is known about the mechanisms underlying synaptic loss in AD, how neurons compensate for this loss and whether this provides cognitive benefits remain almost completely unexplored. In this review, we describe two potential compensatory mechanisms implemented following synaptic loss: the enlargement of the surviving neighboring synapses and the regeneration of synapses. Because dendritic spines, the postsynaptic site of excitatory synapses, are easily visualized using light microscopy, we focus on a range of microscopy approaches to monitor synaptic loss and compensation. Here, we stress the importance of longitudinal dendritic spine imaging, as opposed to fixed-tissue imaging, to gain insights into the temporal dynamics of dendritic spine compensation. We believe that understanding the molecular mechanisms behind these and other forms of synaptic compensation and regeneration will be critical for the development of therapeutics aiming at delaying the onset of cognitive deficits in AD.

摘要

兴奋性突触的丧失是阿尔茨海默病(AD)认知缺陷的基础。尽管人们已经了解了 AD 中突触丧失的机制,但神经元如何补偿这种丧失,以及这种补偿是否能带来认知益处,仍然几乎完全没有得到探索。在这篇综述中,我们描述了两种可能的补偿机制:存活的相邻突触的增大和突触的再生。由于树突棘是兴奋性突触的突触后位点,使用光学显微镜很容易观察到,因此我们专注于一系列显微镜方法来监测突触的丧失和补偿。在这里,我们强调了纵向树突棘成像的重要性,而不是固定组织成像,以深入了解树突棘补偿的时间动态。我们相信,了解这些和其他形式的突触补偿和再生背后的分子机制对于开发旨在延缓 AD 认知缺陷发生的治疗方法将是至关重要的。

相似文献

1
Synaptic Compensatory Plasticity in Alzheimer's Disease.
J Neurosci. 2023 Oct 11;43(41):6833-6840. doi: 10.1523/JNEUROSCI.0379-23.2023.
2
Synapses and dendritic spines as pathogenic targets in Alzheimer's disease.
Neural Plast. 2012;2012:247150. doi: 10.1155/2012/247150. Epub 2012 Feb 6.
3
Synaptic Plasticity, Dementia and Alzheimer Disease.
CNS Neurol Disord Drug Targets. 2017;16(3):220-233. doi: 10.2174/1871527316666170113120853.
4
Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer's disease.
J Neurosci. 2018 Jan 31;38(5):1085-1099. doi: 10.1523/JNEUROSCI.2127-17.2017. Epub 2017 Dec 15.
5
Dendritic spine loss and synaptic alterations in Alzheimer's disease.
Mol Neurobiol. 2008 Feb;37(1):73-82. doi: 10.1007/s12035-008-8018-z. Epub 2008 Apr 26.
6
Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability.
Eur J Neurosci. 2010 Jun;31(12):2178-84. doi: 10.1111/j.1460-9568.2010.07270.x. Epub 2010 Jun 9.
7
Regulation of postsynaptic signaling in structural synaptic plasticity.
Curr Opin Neurobiol. 2017 Aug;45:148-155. doi: 10.1016/j.conb.2017.05.016. Epub 2017 Jun 7.
8
Dendritic spine plasticity: looking beyond development.
Brain Res. 2007 Dec 12;1184:65-71. doi: 10.1016/j.brainres.2006.02.094. Epub 2006 Apr 5.
9
Evidence for altered dendritic spine compartmentalization in Alzheimer's disease and functional effects in a mouse model.
Acta Neuropathol. 2018 Jun;135(6):839-854. doi: 10.1007/s00401-018-1847-6. Epub 2018 Apr 25.

引用本文的文献

1
Resource-dependent heterosynaptic spike-timing-dependent plasticity in recurrent networks with and without synaptic degeneration.
Front Comput Neurosci. 2025 Jul 22;19:1593837. doi: 10.3389/fncom.2025.1593837. eCollection 2025.
2
Frequency and duration of sensory flicker control transcriptional profiles in 5xFAD mice.
APL Bioeng. 2025 Jul 8;9(3):036102. doi: 10.1063/5.0261497. eCollection 2025 Sep.
3
Compartment-specific analysis reveals disrupted astrocytic calcium transients in Alzheimer's mice.
Res Sq. 2025 Jun 15:rs.3.rs-6682029. doi: 10.21203/rs.3.rs-6682029/v1.
4
Time-Frequency Domain Analysis of Quantitative Electroencephalography as a Biomarker for Dementia.
Diagnostics (Basel). 2025 Jun 13;15(12):1509. doi: 10.3390/diagnostics15121509.
7
Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models.
Transl Neurodegener. 2024 Dec 3;13(1):58. doi: 10.1186/s40035-024-00452-7.
8
A bibliometric analysis of the relationship between traumatic brain injury and Alzheimer's disease (1993-2023).
Front Aging Neurosci. 2024 Oct 23;16:1462132. doi: 10.3389/fnagi.2024.1462132. eCollection 2024.
9
Alteration in temporal-cerebellar effective connectivity can effectively distinguish stable and progressive mild cognitive impairment.
Front Aging Neurosci. 2024 Aug 29;16:1442721. doi: 10.3389/fnagi.2024.1442721. eCollection 2024.
10
Early hippocampal hyperexcitability and synaptic reorganization in mouse models of amyloidosis.
iScience. 2024 Aug 2;27(9):110629. doi: 10.1016/j.isci.2024.110629. eCollection 2024 Sep 20.

本文引用的文献

1
Synaptic resilience is associated with maintained cognition during ageing.
Alzheimers Dement. 2023 Jun;19(6):2560-2574. doi: 10.1002/alz.12894. Epub 2022 Dec 22.
2
Synaptic degeneration in Alzheimer disease.
Nat Rev Neurol. 2023 Jan;19(1):19-38. doi: 10.1038/s41582-022-00749-z. Epub 2022 Dec 13.
3
Emerging insights into synapse dysregulation in Alzheimer's disease.
Brain Commun. 2022 Apr 8;4(2):fcac083. doi: 10.1093/braincomms/fcac083. eCollection 2022.
4
Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease.
Semin Cell Dev Biol. 2023 Apr;139:84-92. doi: 10.1016/j.semcdb.2022.03.032. Epub 2022 Mar 31.
5
Translational approaches to understanding resilience to Alzheimer's disease.
Trends Neurosci. 2022 May;45(5):369-383. doi: 10.1016/j.tins.2022.02.005. Epub 2022 Mar 17.
6
3D Analysis of the Synaptic Organization in the Entorhinal Cortex in Alzheimer's Disease.
eNeuro. 2021 Jun 24;8(3). doi: 10.1523/ENEURO.0504-20.2021. Print 2021 May-Jun.
7
Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon Imaging of Transgenic Mouse Models.
Front Cell Neurosci. 2020 Dec 17;14:592607. doi: 10.3389/fncel.2020.592607. eCollection 2020.
8
Dendritic Spines: Mediators of Cognitive Resilience in Aging and Alzheimer's Disease.
Neuroscientist. 2021 Oct;27(5):487-505. doi: 10.1177/1073858420945964. Epub 2020 Aug 19.
9
Cortical Synaptic AMPA Receptor Plasticity during Motor Learning.
Neuron. 2020 Mar 4;105(5):895-908.e5. doi: 10.1016/j.neuron.2019.12.005. Epub 2019 Dec 31.
10
Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated cortical aging.
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26239-26246. doi: 10.1073/pnas.1902301116. Epub 2019 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验