Suppr超能文献

定量脑电图的时频域分析作为痴呆症的生物标志物

Time-Frequency Domain Analysis of Quantitative Electroencephalography as a Biomarker for Dementia.

作者信息

Simfukwe Chanda, An Seong Soo A, Youn Young Chul

机构信息

Department of Bionano Technology, Gachon University, Seongnam-si 1342, Republic of Korea.

Department of Neurology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 Jun 13;15(12):1509. doi: 10.3390/diagnostics15121509.

Abstract

Biomarkers currently used to diagnose dementia, including Alzheimer's disease (AD), primarily detect molecular and structural brain changes associated with the condition's pathology. Although these markers are pivotal in detecting disease-specific neuropathological hallmarks, their association with the clinical manifestations of dementia frequently remains poorly defined and exhibits considerable variability. These biomarkers may show abnormalities in cognitively healthy individuals and frequently fail to accurately represent the severity of cognitive and functional impairments in individuals with dementia. Research indicates that synaptic degeneration and functional impairment occur early in the progression of AD and exhibit the strongest correlation with clinical symptoms. This identifies brain functional impairment measurements as promising early indicators for AD detection. Electroencephalography (EEG), a non-invasive and cost-effective method with high temporal resolution, is used as a biomarker for the early detection and diagnosis of AD through frequency-domain analysis of quantitative EEG (qEEG). Many researchers demonstrate that qEEG measures effectively identify disruptions in neuronal activity, including alterations in activity patterns, topographical distribution, and synchronization. Specific findings along the stages of AD include impaired neuronal synchronization, generalized EEG slowing, and an increase in lower-frequency bands accompanied by a decrease in higher-frequency bands of resting state EEG. Moreover, qEEG helps clinicians effectively correlate indicators of AD neuropathology and distinguish between various forms of dementia, positioning it as a promising, low-cost, non-invasive biomarker for dementia. However, additional clinical investigation is required to clarify the diagnostic and prognostic significance of qEEG measurements as early functional markers for AD. This narrative review examines time-frequency domain qEEG analysis as a potential biomarker across various types of dementia. Through a structured search of PubMed and Scopus, we identified studies assessing spectral and connectivity-based qEEG features. Consistent findings include EEG slowing, reduced functional connectivity, and network desynchronization. The review outlines key methodological challenges, such as lack of standardization and limited longitudinal validation, and recommends integrative, multimodal approaches to enhance diagnostic precision and clinical applicability.

摘要

目前用于诊断痴呆症(包括阿尔茨海默病(AD))的生物标志物主要检测与该病症病理相关的分子和大脑结构变化。尽管这些标志物在检测疾病特异性神经病理特征方面至关重要,但其与痴呆症临床表现的关联往往仍不明确,且存在相当大的变异性。这些生物标志物可能在认知健康个体中显示异常,并且常常无法准确反映痴呆症患者认知和功能障碍的严重程度。研究表明,突触退化和功能障碍在AD进展的早期就会出现,并且与临床症状的相关性最强。这表明大脑功能障碍测量是AD检测有前景的早期指标。脑电图(EEG)是一种具有高时间分辨率的非侵入性且经济高效的方法,通过对定量脑电图(qEEG)进行频域分析,被用作AD早期检测和诊断的生物标志物。许多研究人员表明,qEEG测量有效地识别了神经元活动的中断,包括活动模式、地形分布和同步性的改变。AD各阶段的具体发现包括神经元同步受损、脑电图普遍减慢,以及静息状态脑电图低频带增加伴随高频带减少。此外,qEEG有助于临床医生有效地关联AD神经病理学指标并区分各种形式的痴呆症,使其成为一种有前景的、低成本的、非侵入性的痴呆症生物标志物。然而,需要更多的临床研究来阐明qEEG测量作为AD早期功能标志物的诊断和预后意义。这篇叙述性综述探讨了时频域qEEG分析作为各种类型痴呆症潜在生物标志物的情况。通过对PubMed和Scopus进行结构化检索,我们确定了评估基于频谱和连通性的qEEG特征的研究。一致的发现包括脑电图减慢、功能连通性降低和网络去同步化。该综述概述了关键的方法学挑战,如缺乏标准化和有限的纵向验证,并建议采用综合、多模态方法来提高诊断精度和临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab69/12192203/df497776c28f/diagnostics-15-01509-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验