Suppr超能文献

房颤患者使用AF-EduApp(一款支持房颤管理的新型移动应用程序)的情况。

Engagement of atrial fibrillation patients with the AF-EduApp, a new mobile application to support AF management.

作者信息

Knaepen Lieselotte, Delesie Michiel, Theunis Rik, Gorissen Peter, Vijgen Johan, Dendale Paul, Desteghe Lien, Heidbuchel Hein

机构信息

Department of Cardiology, Antwerp University Hospital, Edegem, Belgium.

Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium.

出版信息

Front Cardiovasc Med. 2023 Sep 26;10:1243783. doi: 10.3389/fcvm.2023.1243783. eCollection 2023.

Abstract

INTRODUCTION

A multidisciplinary approach is needed for the management of atrial fibrillation (AF) in which the patient has a central role. Smart devices create opportunities to improve AF management. This paper aimed to evaluate the in-house developed AF-EduApp application on its usability, satisfaction, and communication effectiveness with the care team.

METHODS

During a multicenter, prospective randomized controlled trial, 153 AF patients were included in the AF-EduApp study, with a minimum follow-up of 12 months and a maximum follow-up of 15 months if taking oral anticoagulation (OAC). The AF-EduApp contains six main modules: Questionnaires, Education, Measurement data entry, Medication overview with reminders, Appointments, and Communication with the care team. The App focuses on four main goals: (1) to improve AF knowledge, (2) to increase self-care capabilities, (3) electronic monitoring to improve therapy adherence to OAC, and (4) communication with the care team. Patients unable to use the AF-EduApp were assigned to a no-App control group ( = 41) without intervention comparable to the standard care group (SC,  = 346) of the AF-EduCare study.

RESULTS

A total of 152 patients effectively used the App during a mean follow-up of 386.8 ± 108. 1 days (one included patient could not install the application due to an iPhone from the United States). They opened the application on average on 130.1 ± 144.7 days. Of the 109 patients still in follow-up after 12 months (i.e. patients who did not withdraw and on OAC), 90 patients (82.6%) actively used the application at least one day in the next 41 days. The Measurement module was the most used, with a median of used days over the total available days of 6.4%. A total of 75 App patients (49.3%) asked questions, mostly clinical-related questions (e.g. medication use, or actionability on clinical entered parameters). A mean score of 8.1 ± 1.7 about the "perceived quality of follow-up in the past year" was given by the App ITT patients, compared to a score of 7.7 ± 2.0 by the SC group ( = .072). Patients who used the App were more attracted to future follow-up with an application compared to patients who would be capable of using the application of the SC group (31.6% vs. 12.5%;  < .001).

CONCLUSION

This study showed a positive attitude towards using a mobile application, with AF patients using the application one-third of the available days. Patients used the App most for entering measured parameters, and to contact the care team.

摘要

引言

心房颤动(AF)的管理需要多学科方法,其中患者起着核心作用。智能设备为改善房颤管理创造了机会。本文旨在评估自行开发的AF-EduApp应用程序在可用性、满意度以及与护理团队沟通效果方面的表现。

方法

在一项多中心、前瞻性随机对照试验中,153名房颤患者被纳入AF-EduApp研究,若服用口服抗凝药(OAC),最短随访12个月,最长随访15个月。AF-EduApp包含六个主要模块:问卷、教育、测量数据录入、带有提醒的用药概述、预约以及与护理团队沟通。该应用专注于四个主要目标:(1)提高房颤知识;(2)增强自我护理能力;(3)电子监测以提高对OAC治疗的依从性;(4)与护理团队沟通。无法使用AF-EduApp的患者被分配到无应用程序对照组(n = 41),不进行干预,该组与AF-EduCare研究的标准护理组(SC,n = 346)情况相当。

结果

在平均386.8±108.1天的随访期间,共有152名患者有效使用了该应用程序(一名纳入研究的患者因使用美国的iPhone手机而无法安装该应用程序)。他们平均在130.1±144.7天打开过该应用程序。在12个月后仍在随访的109名患者(即未退出且正在服用OAC的患者)中,90名患者(82.6%)在接下来的41天中至少有一天积极使用了该应用程序。测量模块使用最多,使用天数占总可用天数的中位数为6.4%。共有75名应用程序患者(49.3%)提问,大多是与临床相关的问题(如用药或对临床输入参数的可操作性)。AF-EduApp意向性分析(ITT)组患者对“过去一年随访感知质量”的平均评分为8.1±1.7,而SC组评分为7.7±2.0(P = 0.072)。与SC组中能够使用该应用程序的患者相比,使用AF-EduApp的患者对未来使用该应用程序进行随访更感兴趣(31.6%对12.5%;P<0.001)。

结论

本研究表明患者对使用移动应用程序持积极态度,房颤患者在可用天数的三分之一时间使用了该应用程序。患者使用该应用程序主要是为了输入测量参数以及与护理团队联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd37/10562600/66901d8be2e4/fcvm-10-1243783-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验