Suppr超能文献

电子健康记录质量控制:一种用于自动进行电子健康记录标准化和预处理以预测临床结果的简化流程。

EHR-QC: A streamlined pipeline for automated electronic health records standardisation and preprocessing to predict clinical outcomes.

作者信息

Ramakrishnaiah Yashpal, Macesic Nenad, Webb Geoffrey I, Peleg Anton Y, Tyagi Sonika

机构信息

Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne 3000, VIC, Australia.

Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne 3000, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne 3000, VIC, Australia.

出版信息

J Biomed Inform. 2023 Nov;147:104509. doi: 10.1016/j.jbi.2023.104509. Epub 2023 Oct 11.

Abstract

The adoption of electronic health records (EHRs) has created opportunities to analyse historical data for predicting clinical outcomes and improving patient care. However, non-standardised data representations and anomalies pose major challenges to the use of EHRs in digital health research. To address these challenges, we have developed EHR-QC, a tool comprising two modules: the data standardisation module and the preprocessing module. The data standardisation module migrates source EHR data to a standard format using advanced concept mapping techniques, surpassing expert curation in benchmarking analysis. The preprocessing module includes several functions designed specifically to handle healthcare data subtleties. We provide automated detection of data anomalies and solutions to handle those anomalies. We believe that the development and adoption of tools like EHR-QC is critical for advancing digital health. Our ultimate goal is to accelerate clinical research by enabling rapid experimentation with data-driven observational research to generate robust, generalisable biomedical knowledge.

摘要

电子健康记录(EHRs)的采用为分析历史数据以预测临床结果和改善患者护理创造了机会。然而,非标准化的数据表示形式和异常情况给电子健康记录在数字健康研究中的使用带来了重大挑战。为应对这些挑战,我们开发了EHR-QC,这是一个包含两个模块的工具:数据标准化模块和预处理模块。数据标准化模块使用先进的概念映射技术将源电子健康记录数据迁移到标准格式,在基准分析中超过了专家编纂。预处理模块包括几个专门设计用于处理医疗数据细微之处的功能。我们提供数据异常的自动检测以及处理这些异常的解决方案。我们相信,像EHR-QC这样的工具的开发和采用对于推进数字健康至关重要。我们的最终目标是通过能够快速进行数据驱动的观察性研究实验以生成可靠的、可推广的生物医学知识来加速临床研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验