Ning Yuan-Ni, Tian Di, Tan Man-Li, Luo Xue-Mei, Zhao Shuai, Feng Jia-Xun
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
Commun Biol. 2023 Oct 12;6(1):1032. doi: 10.1038/s42003-023-05404-x.
Filamentous fungus can produce raw-starch-degrading enzyme (RSDE) that efficiently degrades raw starch below starch gelatinization temperature. Employment of RSDE in starch processing can save energy. A key putative transcription factor PoxRsrA (production of raw-starch-degrading enzyme regulation in Penicillium oxalicum) was identified to regulate RSDE production in P. oxalicum; however, its regulatory mechanism remains unclear. Here we show that PoxRsrA was the transcriptional activation domain, with essential residues, D1508, W1509 and M1510. SANT (SWI3, ADA2, N-CoR and TFIIIB)-like domain 1 (SANT1) bound to DNA at the sequence 5'-RHCDDGGD-3' in the promoter regions of genes encoding major amylases, with an essential residue, R866. SANT2 interacted with a putative 3-hydroxyisobutyryl-CoA hydrolase, which suppressed phosphorylation at tyrosines Y1127 and Y1170 of PoxRsrA, thereby inhibiting RSDE biosynthesis. PoxRsrA regulated mycelial sporulation by interacting with Mediator subunit Med6, whereas PoxRsrA regulated RSDE biosynthesis by binding to Med31. Overexpression of PoxRsrA increased sporulation and RSDE production. These findings provide insights into the regulatory mechanisms of fungal RSDE biosynthesis.
丝状真菌能够产生生淀粉降解酶(RSDE),该酶可在淀粉糊化温度以下有效降解生淀粉。在淀粉加工过程中使用RSDE可以节省能源。已鉴定出一个关键的假定转录因子PoxRsrA(草酸青霉中生淀粉降解酶产生的调控因子)来调节草酸青霉中RSDE的产生;然而,其调控机制仍不清楚。在此我们表明,PoxRsrA具有转录激活结构域,其关键残基为D1508、W1509和M1510。类SANT(SWI3、ADA2、N-CoR和TFIIIB)结构域1(SANT1)在编码主要淀粉酶的基因启动子区域的5'-RHCDDGGD-3'序列处与DNA结合,其关键残基为R866。SANT2与一种假定的3-羟基异丁酰辅酶A水解酶相互作用,该酶抑制PoxRsrA酪氨酸Y1127和Y1170处的磷酸化,从而抑制RSDE的生物合成。PoxRsrA通过与中介体亚基Med6相互作用来调节菌丝体的孢子形成,而PoxRsrA通过与Med31结合来调节RSDE的生物合成。PoxRsrA的过表达增加了孢子形成和RSDE的产生。这些发现为真菌RSDE生物合成的调控机制提供了见解。