Suppr超能文献

小脑损伤后的强化运动学习与状态估计有关。

Reinforcement Motor Learning After Cerebellar Damage Is Related to State Estimation.

机构信息

Moss Rehabilitation Research Institute, Medical Arts Building, Suite 100, 50 Township Line Rd, Elkins Park, PA, USA.

Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Cerebellum. 2024 Jun;23(3):1061-1073. doi: 10.1007/s12311-023-01615-4. Epub 2023 Oct 12.

Abstract

Recent work showed that individuals with cerebellar degeneration could leverage intact reinforcement learning (RL) to alter their movement. However, there was marked inter-individual variability in learning, and the factors underlying it were unclear. Cerebellum-dependent sensory prediction may contribute to RL in motor contexts by enhancing body state estimates, which are necessary to solve the credit-assignment problem. The objective of this study was to test the relationship between the predictive component of state estimation and RL in individuals with cerebellar degeneration. Individuals with cerebellar degeneration and neurotypical control participants completed two tasks: an RL task that required them to alter the angle of reaching movements and a state estimation task that tested the somatosensory perception of active and passive movement. The state estimation task permitted the calculation of the active benefit shown by each participant, which is thought to reflect the cerebellum-dependent predictive component of state estimation. We found that the cerebellar and control groups showed similar magnitudes of learning with reinforcement and active benefit on average, but there was substantial variability across individuals. Using multiple regression, we assessed potential predictors of RL. Our analysis included active benefit, somatosensory acuity, clinical ataxia severity, movement variability, movement speed, and age. We found a significant relationship in which greater active benefit predicted better learning with reinforcement in the cerebellar, but not the control group. No other variables showed significant relationships with learning. Overall, our results support the hypothesis that the integrity of sensory prediction is a strong predictor of RL after cerebellar damage.

摘要

最近的研究表明,小脑退行性变患者可以利用完整的强化学习(RL)来改变他们的运动。然而,学习过程中的个体间差异很大,其背后的因素尚不清楚。小脑依赖的感觉预测可能通过增强身体状态估计来促进运动情境中的 RL,而身体状态估计是解决信用分配问题所必需的。本研究的目的是测试小脑退行性变患者状态估计的预测成分与 RL 之间的关系。小脑退行性变患者和神经典型对照组参与者完成了两项任务:一项需要他们改变伸手动作角度的 RL 任务,以及一项测试主动和被动运动体感感知的状态估计任务。状态估计任务允许计算每个参与者的主动收益,这被认为反映了状态估计的小脑依赖预测成分。我们发现小脑组和对照组平均来说都表现出了类似的学习程度和强化作用的主动收益,但个体间存在很大的差异。我们使用多元回归来评估 RL 的潜在预测因素。我们的分析包括主动收益、体感感知敏锐度、临床共济失调严重程度、运动变异性、运动速度和年龄。我们发现一个显著的关系,即较大的主动收益预测小脑组的强化学习效果更好,但对对照组没有影响。没有其他变量与学习有显著关系。总体而言,我们的结果支持这样一种假设,即感觉预测的完整性是小脑损伤后 RL 的一个强有力的预测因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验