Suppr超能文献

用于增强电化学硝酸盐转化为氨及硝酸锌电池的金属有机聚合物的分子工程

Molecular Engineering of a Metal-Organic Polymer for Enhanced Electrochemical Nitrate-to-Ammonia Conversion and Zinc Nitrate Batteries.

作者信息

Zhang Rong, Hong Hu, Liu Xinghui, Zhang Shaoce, Li Chuan, Cui Huilin, Wang Yanbo, Liu Jiahua, Hou Yue, Li Pei, Huang Zhaodong, Guo Ying, Zhi Chunyi

机构信息

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.

Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), 999077, Shatin, NT, HKSAR, China.

出版信息

Angew Chem Int Ed Engl. 2023 Nov 27;62(48):e202309930. doi: 10.1002/anie.202309930. Epub 2023 Oct 20.

Abstract

Metal-organic framework-based materials are promising single-site catalysts for electrocatalytic nitrate (NO ) reduction to value-added ammonia (NH ) on account of well-defined structures and functional tunability but still lack a molecular-level understanding for designing the high-efficient catalysts. Here, we proposed a molecular engineering strategy to enhance electrochemical NO -to-NH conversion by introducing the carbonyl groups into 1,2,4,5-tetraaminobenzene (BTA) based metal-organic polymer to precisely modulate the electronic state of metal centers. Due to the electron-withdrawing properties of the carbonyl group, metal centers can be converted to an electron-deficient state, fascinating the NO adsorption and promoting continuous hydrogenation reactions to produce NH . Compared to CuBTA with a low NO -to-NH conversion efficiency of 85.1 %, quinone group functionalization endows the resulting copper tetraminobenzoquinone (CuTABQ) distinguished performance with a much higher NH FE of 97.7 %. This molecular engineering strategy is also universal, as verified by the improved NO -to-NH conversion performance on different metal centers, including Co and Ni. Furthermore, the assembled rechargeable Zn-NO battery based on CuTABQ cathode can deliver a high power density of 12.3 mW cm . This work provides advanced insights into the rational design of metal complex catalysts through the molecular-level regulation for NO electroreduction to value-added NH .

摘要

基于金属有机框架的材料因其明确的结构和功能可调性,有望成为将电催化硝酸盐(NO )还原为增值氨(NH )的单中心催化剂,但在设计高效催化剂方面仍缺乏分子水平的理解。在此,我们提出了一种分子工程策略,通过将羰基引入基于1,2,4,5-四氨基苯(BTA)的金属有机聚合物中来增强电化学NO 到NH的转化,以精确调节金属中心的电子状态。由于羰基的吸电子特性,金属中心可转变为缺电子状态,吸引NO 吸附并促进连续氢化反应以生成NH 。与NO 到NH转化效率低至85.1%的CuBTA相比,醌基官能化赋予所得的四氨基苯醌铜(CuTABQ)卓越的性能,NH 法拉第效率高达97.7%。这种分子工程策略也是通用的,不同金属中心(包括Co和Ni)上NO 到NH转化性能的提高证实了这一点。此外,基于CuTABQ阴极组装的可充电锌-NO 电池可提供12.3 mW cm 的高功率密度。这项工作通过对NO 电还原为增值NH 的分子水平调控,为金属络合物催化剂的合理设计提供了深入见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验