Chao Guojie, Zong Wei, Zhu Jiexin, Wang Haifeng, Chu Kaibin, Guo Hele, Wang Jian, Dai Yuhang, Gao Xuan, Liu Longxiang, Guo Fei, Parkin Ivan P, Luo Wei, Shearing Paul R, Zhang Longsheng, He Guanjie, Liu Tianxi
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
J Am Chem Soc. 2025 Jun 25;147(25):21432-21442. doi: 10.1021/jacs.5c00400. Epub 2025 Jun 11.
The electrochemical conversion of nitrate (NO), a common nitrogen source in industrial wastewater and contaminated groundwater, into ammonia (NH), signifies an approach to wastewater treatment and NH production. Nevertheless, its selectivity and activity at low NO concentrations and industrial current densities are constrained by limited mass transfer around the electrode. Here, we report a metal-polymer bridging interface constructed by anchoring Cu/CuO nanoparticles onto a two-dimensional (2D) Cu-based benzene dicarboxylate (CuBDC) coordination polymer via in situ electroreduction (denoted as E-CuBDC). This interface weakens the electrostatic repulsion and regulates the distribution/migration of NO and HO, creating a Janus NO-rich and HO-poor domain near the catalyst surface. Operando characterizations and theoretical simulations indicate that the metal-polymer bridging interface selectively accumulates NO and reduces the energy barrier toward the reduction of *NHOH to *NH, overcoming the mass transfer limitations at a low NO concentration. E-CuBDC exhibits a high Faradaic efficiency (FE) of over 90% across wide NO concentrations (7.1-100 mM NO) and high applied voltages. Additionally, it achieved stable NH production over 100 h at ampere-level current densities. When applied in a Zn-NO system, this newly developed E-CuBDC catalyst demonstrates an outstanding power density and FE for NH production, showcasing its great potential for large-scale electrochemical conversion and storage systems. This study presents a generalizable strategy for constructing metal-polymer interfaces to regulate interfacial mass transport.
将硝酸盐(NO)(工业废水和受污染地下水中常见的氮源)电化学转化为氨(NH),是一种废水处理和NH生产的方法。然而,其在低NO浓度和工业电流密度下的选择性和活性受到电极周围传质受限的制约。在此,我们报告了一种通过原位电还原将Cu/CuO纳米颗粒锚定在二维(2D)铜基苯二甲酸酯(CuBDC)配位聚合物上构建的金属 - 聚合物桥接界面(表示为E - CuBDC)。该界面减弱了静电排斥并调节了NO和HO的分布/迁移,在催化剂表面附近形成了一个富NO且贫HO的Janus域。原位表征和理论模拟表明,金属 - 聚合物桥接界面选择性地积累NO并降低了将NHOH还原为NH的能垒,克服了低NO浓度下的传质限制。E - CuBDC在宽NO浓度范围(7.1 - 100 mM NO)和高施加电压下表现出超过90%的高法拉第效率(FE)。此外,它在安培级电流密度下实现了超过100小时的稳定NH生产。当应用于Zn - NO系统时,这种新开发的E - CuBDC催化剂在NH生产方面展示出出色的功率密度和FE,展现了其在大规模电化学转化和存储系统中的巨大潜力。本研究提出了一种构建金属 - 聚合物界面以调节界面传质的通用策略。