用于光电化学水分解的 CuWO 光阳极中电荷载流子复合的性质
Nature of Charge Carrier Recombination in CuWO Photoanodes for Photoelectrochemical Water Splitting.
作者信息
Grigioni Ivan, Polo Annalisa, Nomellini Chiara, Vigni Laura, Poma Alessandro, Dozzi Maria Vittoria, Selli Elena
机构信息
Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
出版信息
ACS Appl Energy Mater. 2023 Sep 20;6(19):10020-10029. doi: 10.1021/acsaem.3c01608. eCollection 2023 Oct 9.
CuWO is a ternary semiconductor oxide with excellent visible light harvesting properties up to 550 nm and stability at high pH values, which make it a suitable material to build photoanodes for solar light conversion to hydrogen via water splitting. In this work, we studied the photoelectrochemical (PEC) performance of transparent CuWO electrodes with tunable light absorption and thickness, aiming at identifying the intrinsic bottlenecks of photogenerated charge carriers in this semiconductor. We found that electrodes with optimal CuWO thickness exhibit visible light activity due to the absorption of long-wavelength photons and a balanced electron and hole extraction from the oxide. The PEC performance of CuWO is light-intensity-dependent, with charge recombination increasing with light intensity and most photogenerated charge carriers recombining in bulk sites, as demonstrated by PEC tests performed in the presence of sacrificial agents or cocatalysts. The best-performing 580 nm thick CuWO electrode delivers a photocurrent of 0.37 mA cm at 1.23 V, with a 7% absorbed photon to current efficiency over the CuWO absorption spectrum.
CuWO是一种三元半导体氧化物,具有高达550 nm的优异可见光捕获性能以及在高pH值下的稳定性,这使其成为构建用于通过水分解将太阳光转化为氢气的光阳极的合适材料。在这项工作中,我们研究了具有可调光吸收和厚度的透明CuWO电极的光电化学(PEC)性能,旨在确定这种半导体中光生电荷载流子的内在瓶颈。我们发现,具有最佳CuWO厚度的电极由于吸收长波长光子以及从氧化物中平衡地提取电子和空穴而表现出可见光活性。CuWO的PEC性能取决于光强度,电荷复合随光强度增加,并且大多数光生电荷载流子在本体位置复合,这在存在牺牲剂或助催化剂的情况下进行的PEC测试中得到了证明。性能最佳的580 nm厚CuWO电极在1.23 V时提供0.37 mA cm的光电流,在CuWO吸收光谱上的吸收光子到电流效率为7%。
相似文献
ACS Appl Energy Mater. 2023-9-20
J Phys Chem C Nanomater Interfaces. 2021-3-18
ACS Appl Mater Interfaces. 2016-4-1
Acc Chem Res. 2016-5-26
ACS Appl Mater Interfaces. 2020-11-11
Photochem Photobiol Sci. 2023-12
ACS Appl Mater Interfaces. 2021-9-15
引用本文的文献
Materials (Basel). 2024-10-8
本文引用的文献
ACS Appl Energy Mater. 2022-11-28
Angew Chem Int Ed Engl. 2023-1-2
ACS Appl Mater Interfaces. 2022-10-26
J Phys Chem C Nanomater Interfaces. 2021-3-18
J Phys Chem C Nanomater Interfaces. 2021-4-8
ACS Appl Energy Mater. 2020-7-27
ACS Appl Mater Interfaces. 2020-11-11
J Phys Condens Matter. 2020-1-1
Chem Sci. 2019-1-16