文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于纳米纤维素@没食子酸的金属有机框架材料:一种用于环保食品包装的新型材料。

Nanocellulose@gallic Acid-Based MOFs: A Novel Material for Ecofriendly Food Packaging.

作者信息

Kumari Pratibha

机构信息

Department of Chemistry, University of Delhi, New Delhi 110007, India.

Bioorganic Material Research Laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.

出版信息

ACS Omega. 2024 Jul 27;9(33):35654-35665. doi: 10.1021/acsomega.4c03847. eCollection 2024 Aug 20.


DOI:10.1021/acsomega.4c03847
PMID:39184514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11340005/
Abstract

The development of an effective food packaging material is essential for safeguarding against infections and preventing chemical, physical, and biological changes during food storage and transportation. In the present study, we successfully synthesized an innovative food packaging material by combining chitosan (CH), nanocellulose (NC), and a gallic acid-based metal-organic framework (MOF). The CH films were prepared using different concentrations of NC (5 and 10%) and MOFs (1.5, 2.5, and 5%). Various properties of prepared films, including water solubility (WS), moisture content (MC), swelling degree, oxygen permeability, water vapor permeability (WVP), mechanical property, color analysis, and light transmittance, were studied. The chitosan film with a 5% NC and 1.5% MOF (CH-5% NC-1.5% MOF) exhibited the least water solubility, moisture content, and water vapor permeability, indicating the overall stability of the film. Additionally, this film demonstrated low oxygen permeability, as indicated by a peroxide value of 18.911 ± 4.009, ensuring the effective preservation of packaged contents. Notably, this synthesized film exhibited high antioxidant activity, resulting in an extended duration of 52 days. This antioxidant activity was further validated by the preservation of apple slices for 9 days in a CH-5% NC-1.5% MOF film. The findings of the study suggest that the developed films can provide a promising and environmentally friendly solution for active food packaging.

摘要

开发一种有效的食品包装材料对于防止食品在储存和运输过程中受到感染以及防止化学、物理和生物变化至关重要。在本研究中,我们通过将壳聚糖(CH)、纳米纤维素(NC)和基于没食子酸的金属有机框架(MOF)相结合,成功合成了一种创新的食品包装材料。使用不同浓度的NC(5%和10%)和MOF(1.5%、2.5%和5%)制备了CH薄膜。研究了所制备薄膜的各种性能,包括水溶性(WS)、水分含量(MC)、溶胀度、氧气透过率、水蒸气透过率(WVP)、机械性能、颜色分析和透光率。含有5% NC和1.5% MOF的壳聚糖薄膜(CH-5% NC-1.5% MOF)表现出最低的水溶性、水分含量和水蒸气透过率,表明该薄膜具有整体稳定性。此外,该薄膜的氧气透过率较低,过氧化值为18.911±4.009,确保了包装内容物的有效保存。值得注意的是,这种合成薄膜表现出高抗氧化活性,保鲜期延长至52天。将苹果片保存在CH-5% NC-1.5% MOF薄膜中9天,进一步验证了这种抗氧化活性。该研究结果表明,所开发的薄膜可为活性食品包装提供一种有前景且环保的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/d04f838a15ce/ao4c03847_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/c1c5f2b6bbbe/ao4c03847_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/4630d44e6bcf/ao4c03847_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/fca31359acbc/ao4c03847_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/c6adf1a6bb89/ao4c03847_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/dfa49f258052/ao4c03847_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/03796160688b/ao4c03847_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/b8abcee3d1ea/ao4c03847_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/39d349de5af7/ao4c03847_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/77e438644988/ao4c03847_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/d357939f1dd8/ao4c03847_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/0bd608c0c96f/ao4c03847_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/8c2d49f53568/ao4c03847_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/6872261a098e/ao4c03847_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/d04f838a15ce/ao4c03847_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/c1c5f2b6bbbe/ao4c03847_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/4630d44e6bcf/ao4c03847_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/fca31359acbc/ao4c03847_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/c6adf1a6bb89/ao4c03847_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/dfa49f258052/ao4c03847_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/03796160688b/ao4c03847_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/b8abcee3d1ea/ao4c03847_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/39d349de5af7/ao4c03847_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/77e438644988/ao4c03847_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/d357939f1dd8/ao4c03847_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/0bd608c0c96f/ao4c03847_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/8c2d49f53568/ao4c03847_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/6872261a098e/ao4c03847_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76a/11340005/d04f838a15ce/ao4c03847_0014.jpg

相似文献

[1]
Nanocellulose@gallic Acid-Based MOFs: A Novel Material for Ecofriendly Food Packaging.

ACS Omega. 2024-7-27

[2]
Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging.

Food Chem. 2020-7-21

[3]
Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging.

Carbohydr Polym. 2019-9-25

[4]
Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel.

Int J Biol Macromol. 2021-12-1

[5]
Assessment of Chitosan/Gelatin Blend Enriched with Natural Antioxidants for Antioxidant Packaging of Fish Oil.

Antioxidants (Basel). 2024-6-11

[6]
Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols.

Int J Biol Macromol. 2018-3-23

[7]
Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging.

Recent Pat Nanotechnol. 2019

[8]
Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract.

Carbohydr Polym. 2018-4-21

[9]
Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan.

Int J Mol Sci. 2022-9-12

[10]
Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins.

Int J Biol Macromol. 2019-5-7

本文引用的文献

[1]
Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging.

Sci Rep. 2024-1-4

[2]
One-pot synthesis of novel chitosan-salicylaldehyde polymer composites for ammonia sensing.

Sci Rep. 2024-1-2

[3]
Synergic versus Antagonist Effects of Rutin on Gallic Acid or Coumarin Incorporated into Chitosan Active Films: Impacts on Their Release Kinetics and Antioxidant Activity.

Antioxidants (Basel). 2023-10-30

[4]
Nature of Charge Carrier Recombination in CuWO Photoanodes for Photoelectrochemical Water Splitting.

ACS Appl Energy Mater. 2023-9-20

[5]
Chitosan with Natural Additives as a Potential Food Packaging.

Materials (Basel). 2023-2-14

[6]
Novel pectin-based nanocomposite film for active food packaging applications.

Sci Rep. 2022-11-30

[7]
Silver Nanowires Coated Nitrocellulose Paper for High-Efficiency Electromagnetic Interference Shielding.

ACS Omega. 2022-11-1

[8]
Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan.

Int J Mol Sci. 2022-9-12

[9]
Value-Added Utilization of Wheat Straw: From Cellulose and Cellulose Nanofiber to All-Cellulose Nanocomposite Film.

Membranes (Basel). 2022-4-28

[10]
Fluorescence control of chitin and chitosan fabricated surface functionalization using direct oxidative polymerization.

RSC Adv. 2018-2-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索