Kumari Pratibha
Department of Chemistry, University of Delhi, New Delhi 110007, India.
Bioorganic Material Research Laboratory, Department of Chemistry, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
ACS Omega. 2024 Jul 27;9(33):35654-35665. doi: 10.1021/acsomega.4c03847. eCollection 2024 Aug 20.
The development of an effective food packaging material is essential for safeguarding against infections and preventing chemical, physical, and biological changes during food storage and transportation. In the present study, we successfully synthesized an innovative food packaging material by combining chitosan (CH), nanocellulose (NC), and a gallic acid-based metal-organic framework (MOF). The CH films were prepared using different concentrations of NC (5 and 10%) and MOFs (1.5, 2.5, and 5%). Various properties of prepared films, including water solubility (WS), moisture content (MC), swelling degree, oxygen permeability, water vapor permeability (WVP), mechanical property, color analysis, and light transmittance, were studied. The chitosan film with a 5% NC and 1.5% MOF (CH-5% NC-1.5% MOF) exhibited the least water solubility, moisture content, and water vapor permeability, indicating the overall stability of the film. Additionally, this film demonstrated low oxygen permeability, as indicated by a peroxide value of 18.911 ± 4.009, ensuring the effective preservation of packaged contents. Notably, this synthesized film exhibited high antioxidant activity, resulting in an extended duration of 52 days. This antioxidant activity was further validated by the preservation of apple slices for 9 days in a CH-5% NC-1.5% MOF film. The findings of the study suggest that the developed films can provide a promising and environmentally friendly solution for active food packaging.
开发一种有效的食品包装材料对于防止食品在储存和运输过程中受到感染以及防止化学、物理和生物变化至关重要。在本研究中,我们通过将壳聚糖(CH)、纳米纤维素(NC)和基于没食子酸的金属有机框架(MOF)相结合,成功合成了一种创新的食品包装材料。使用不同浓度的NC(5%和10%)和MOF(1.5%、2.5%和5%)制备了CH薄膜。研究了所制备薄膜的各种性能,包括水溶性(WS)、水分含量(MC)、溶胀度、氧气透过率、水蒸气透过率(WVP)、机械性能、颜色分析和透光率。含有5% NC和1.5% MOF的壳聚糖薄膜(CH-5% NC-1.5% MOF)表现出最低的水溶性、水分含量和水蒸气透过率,表明该薄膜具有整体稳定性。此外,该薄膜的氧气透过率较低,过氧化值为18.911±4.009,确保了包装内容物的有效保存。值得注意的是,这种合成薄膜表现出高抗氧化活性,保鲜期延长至52天。将苹果片保存在CH-5% NC-1.5% MOF薄膜中9天,进一步验证了这种抗氧化活性。该研究结果表明,所开发的薄膜可为活性食品包装提供一种有前景且环保的解决方案。
Antioxidants (Basel). 2024-6-11
ACS Appl Energy Mater. 2023-9-20
Materials (Basel). 2023-2-14