Suppr超能文献

用于碱离子电池电极和固态电解质的化合物的缺陷机制及传输特性的理论方法。

Theoretical approaches to defect mechanisms and transport properties of compounds used for electrodes and solid-state electrolytes in alkali-ion batteries.

作者信息

Zulueta Yohandys A, Nguyen Minh Tho

机构信息

Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, CP-90500, Santiago de Cuba, Cuba.

Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

出版信息

Phys Chem Chem Phys. 2023 Oct 25;25(41):27926-27935. doi: 10.1039/d3cp03627h.

Abstract

The transition from fossil fuels to cleaner energies employing different renewable sources constitutes one of the primary worldwide challenges. The search for appropriate solutions is becoming more urgent in view of the severe consequences of climate change. As for a perspective, stationary energy storage, alkali-ion batteries and hybrid supercapacitors are, among others, considered as efficient and affordable solutions. Alkali-ion batteries have proved to be the most investigated products in the past decade including optimizations for cost, energy density and safety. In this Perspective, a computational approach and its applicability in the inverse material design are presented. This approach includes density functional theory calculations, force field-based determinations and both static and molecular dynamics simulations. As for an illustration, the main properties of a selected series of battery materials, including oxides and sulfides LiSiO, LiSnO, SrSnO, and ABX (A = Li, Na, K; B = Ti, Sn; X = O, S), and mixed halide antiperovskite AOX (A = Li, Na; X = Cl, Br) are explored in depth using these theoretical approaches. Doping strategies, new dopant incorporation mechanism, treatment with alkali insertion/de-insertion cycle in electrodes, transport properties, as well as thermodynamic stability, are discussed. Theoretical approaches reveal that the oxygen-sulfur exchange in alkali hexatitanates and hexastannates induces remarkable improvement of the required properties for electrode and electrolyte materials. In addition, doping of LiSiO with low Na-concentration enhances the room temperature Li-diffusivity by a reduction of the activation energy. The effects of transition-metal and divalent dopants on the defect chemistry and transport properties of LiSnO are also disclosed. The interstitial trivalent doping mechanism is a friendly synthesis strategy to improve the large-scale diffusion in LiSnO. The potential of SrSnO as an anode in alkali-ion batteries, and the influence of a particular grain boundary in nanocrystalline antiperovskite AOX are also revealed by using advanced atomistic simulations. The computational approaches described here provide us with a convenient tool for the determination of the properties of battery materials with high accuracy and for the prediction of characteristics of a new generation of alkali battery materials that could be used in improved technologies.

摘要

从化石燃料向采用不同可再生能源的清洁能源过渡是全球面临的主要挑战之一。鉴于气候变化的严重后果,寻求合适的解决方案变得更加紧迫。从一个角度来看,固定式储能、碱离子电池和混合超级电容器等被视为高效且经济实惠的解决方案。在过去十年中,碱离子电池已被证明是研究最多的产品,包括在成本、能量密度和安全性方面的优化。在此视角下,介绍了一种计算方法及其在逆材料设计中的适用性。该方法包括密度泛函理论计算、基于力场的测定以及静态和分子动力学模拟。作为示例,使用这些理论方法深入探索了一系列选定的电池材料的主要性能,包括氧化物和硫化物LiSiO、LiSnO、SrSnO以及ABX(A = Li、Na、K;B = Ti、Sn;X = O、S),还有混合卤化物反钙钛矿AOX(A = Li、Na;X = Cl、Br)。讨论了掺杂策略、新的掺杂剂掺入机制、电极中碱插入/脱插循环处理、传输特性以及热力学稳定性。理论方法表明,碱金属六钛酸盐和六锡酸盐中的氧 - 硫交换显著改善了电极和电解质材料所需的性能。此外,用低浓度Na掺杂LiSiO通过降低活化能提高了室温下的Li扩散率。还揭示了过渡金属和二价掺杂剂对LiSnO的缺陷化学和传输特性的影响。间隙三价掺杂机制是一种有助于改善LiSnO中大规模扩散的合成策略。使用先进的原子模拟还揭示了SrSnO作为碱离子电池阳极的潜力以及纳米晶反钙钛矿AOX中特定晶界的影响。这里描述的计算方法为我们提供了一种方便的工具,用于高精度地确定电池材料的性能,并预测可用于改进技术的新一代碱电池材料的特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验