Suppr超能文献

用于固态电池的反钙钛矿电解质

Antiperovskite Electrolytes for Solid-State Batteries.

作者信息

Xia Wei, Zhao Yang, Zhao Feipeng, Adair Keegan, Zhao Ruo, Li Shuai, Zou Ruqiang, Zhao Yusheng, Sun Xueliang

机构信息

Department of Mechanical and Materials Engineering, University of Western Ontario, London, OntarioN6A 5B9, Canada.

Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen518055, China.

出版信息

Chem Rev. 2022 Feb 9;122(3):3763-3819. doi: 10.1021/acs.chemrev.1c00594. Epub 2022 Jan 11.

Abstract

Solid-state batteries have fascinated the research community over the past decade, largely due to their improved safety properties and potential for high-energy density. Searching for fast ion conductors with sufficient electrochemical and chemical stabilities is at the heart of solid-state battery research and applications. Recently, significant progress has been made in solid-state electrolyte development. Sulfide-, oxide-, and halide-based electrolytes have been able to achieve high ionic conductivities of more than 10 S/cm at room temperature, which are comparable to liquid-based electrolytes. However, their stability toward Li metal anodes poses significant challenges for these electrolytes. The existence of non-Li cations that can be reduced by Li metal in these electrolytes hinders the application of Li anode and therefore poses an obstacle toward achieving high-energy density. The finding of antiperovskites as ionic conductors in recent years has demonstrated a new and exciting solution. These materials, mainly constructed from Li (or Na), O, and Cl (or Br), are lightweight and electrochemically stable toward metallic Li and possess promising ionic conductivity. Because of the structural flexibility and tunability, antiperovskite electrolytes are excellent candidates for solid-state battery applications, and researchers are still exploring the relationship between their structure and ion diffusion behavior. Herein, the recent progress of antiperovskites for solid-state batteries is reviewed, and the strategies to tune the ionic conductivity by structural manipulation are summarized. Major challenges and future directions are discussed to facilitate the development of antiperovskite-based solid-state batteries.

摘要

在过去十年中,固态电池吸引了研究界的关注,这主要归功于其安全性的提高和高能量密度的潜力。寻找具有足够电化学和化学稳定性的快速离子导体是固态电池研究和应用的核心。最近,固态电解质的开发取得了重大进展。硫化物基、氧化物基和卤化物基电解质在室温下能够实现超过10 S/cm的高离子电导率,这与液体电解质相当。然而,它们对锂金属负极的稳定性给这些电解质带来了重大挑战。这些电解质中存在可被锂金属还原的非锂阳离子,这阻碍了锂负极的应用,因此对实现高能量密度构成了障碍。近年来发现反钙钛矿作为离子导体,这展示了一种全新且令人兴奋的解决方案。这些材料主要由锂(或钠)、氧和氯(或溴)构成,重量轻,对金属锂具有电化学稳定性,并具有可观的离子电导率。由于结构的灵活性和可调节性,反钙钛矿电解质是固态电池应用的理想候选材料,研究人员仍在探索其结构与离子扩散行为之间的关系。在此,综述了反钙钛矿在固态电池方面的最新进展,并总结了通过结构调控来调节离子电导率的策略。讨论了主要挑战和未来方向,以促进基于反钙钛矿的固态电池的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验