Yang Lin, Lin Qian, Guo Daying, Wu Lianhui, Guan Zhixi, Jin Huile, Fang Guoyong, Chen Xi'an, Wang Shun
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Wenzhou New Energy Material and Technology Collaborative Innovation Center, Wenzhou 325035, China.
Inorg Chem. 2023 Oct 23;62(42):17565-17574. doi: 10.1021/acs.inorgchem.3c03301. Epub 2023 Oct 13.
Bimetallic layered double hydroxide is considered an ideal electrocatalytic material. However, due to the poor electrical conductivity of the bimetallic layered structure, obtaining highly active and stable catalysts through facile regulation strategies remains a great challenge. Herein, we use a simple corrosion strategy and nitrogen plasma technology to convert cobalt-based metal-organic frameworks into nitrogen-doped CoMn bimetallic layered double hydroxides (CoMn-LDH). Under the condition of regulating the local coordination environment of the catalytic active site and the presence of rich oxygen vacancy defects, N@CoMn-LDH/CC generates a low overpotential of 219 mV at 10 mA cm, which exceeds that of the commercial RuO catalyst. Density functional theory calculation shows that nitrogen doping improves the adsorption energy of the Mn site for oxygen evolution intermediates and reduces the reaction energy barrier of the Co site. Meanwhile, experiments and theoretical calculations verify that the mechanism of nitrogen doping regulating the oxygen evolution reaction (OER) follows the lattice oxygen oxidation mechanism, avoiding the collapse of the structure caused by catalyst reconstruction, thus improving the stability of oxygen evolution. This work provides a new simple strategy for the preparation of catalysts for a superior electrocatalytic oxygen evolution reaction.
双金属层状双氢氧化物被认为是一种理想的电催化材料。然而,由于双金属层状结构的电导率较差,通过简便的调控策略获得高活性和稳定的催化剂仍然是一个巨大的挑战。在此,我们采用简单的腐蚀策略和氮等离子体技术,将钴基金属有机框架转化为氮掺杂的CoMn双金属层状双氢氧化物(CoMn-LDH)。在调节催化活性位点的局部配位环境以及存在丰富氧空位缺陷的条件下,N@CoMn-LDH/CC在10 mA cm时产生219 mV的低过电位,超过了商业RuO催化剂。密度泛函理论计算表明,氮掺杂提高了Mn位点对析氧中间体的吸附能,降低了Co位点的反应能垒。同时,实验和理论计算验证了氮掺杂调节析氧反应(OER)的机制遵循晶格氧氧化机制,避免了催化剂重构导致的结构坍塌,从而提高了析氧的稳定性。这项工作为制备用于优异电催化析氧反应的催化剂提供了一种新的简单策略。