Li Zhenxing, Zhang Xin, Kang Yikun, Yu Cheng Cheng, Wen Yangyang, Hu Mingliang, Meng Dong, Song Weiyu, Yang Yang
State Key Laboratory of Heavy Oil Processing College of New Energy and Materials China University of Petroleum (Beijing) Beijing 102249 China.
College of Science China University of Petroleum (Beijing) Beijing 102249 China.
Adv Sci (Weinh). 2020 Nov 25;8(2):2002631. doi: 10.1002/advs.202002631. eCollection 2021 Jan.
The electrochemical splitting of water into hydrogen and oxygen is considered one of the most promising approaches to generate clean and sustainable energy. However, the low efficiency of the oxygen evolution reaction (OER) acts as a bottleneck in the water splitting process. Herein, interface engineering heterojunctions between ZIF-67 and layered double hydroxide (LDH) are designed to enhance the catalytic activity of the OER and the stability of Co-LDH. The interface is built by the oxygen (O) of Co-LDH and nitrogen (N) of the 2-methylimidazole ligand in ZIF-67, which modulates the local electronic structure of the catalytic active site. Density functional theory calculations demonstrate that the interfacial interaction can enhance the strength of the Co-O bond in Co-LDH, which makes it easier to break the H-O bond and results in a lower free energy change in the potential-determining step at the heterointerface in the OER process. Therefore, the Co-LDH@ZIF-67 exhibits superior OER activity with a low overpotential of 187 mV at a current density of 10 mA cm and long-term electrochemical stability for more than 50 h. This finding provides a design direction for improving the catalytic activity of OER.
将水电化学分解为氢气和氧气被认为是产生清洁和可持续能源最有前景的方法之一。然而,析氧反应(OER)的低效率是水分解过程中的一个瓶颈。在此,设计了ZIF-67与层状双氢氧化物(LDH)之间的界面工程异质结,以提高OER的催化活性和Co-LDH的稳定性。该界面由Co-LDH的氧(O)和ZIF-67中2-甲基咪唑配体的氮(N)构建而成,它调节了催化活性位点的局部电子结构。密度泛函理论计算表明,界面相互作用可以增强Co-LDH中Co-O键的强度,这使得更容易断裂H-O键,并导致OER过程中异质界面处决定电位步骤的自由能变化更低。因此,Co-LDH@ZIF-67在10 mA cm的电流密度下具有187 mV的低过电位,表现出优异的OER活性,并具有超过50 h的长期电化学稳定性。这一发现为提高OER的催化活性提供了一个设计方向。