Suppr超能文献

通过网状化学方法实现无牺牲剂高效水分解的表面简并半导体光催化

Surface-Degenerate Semiconductor Photocatalysis for Efficient Water Splitting without Sacrificial Agents via a Reticular Chemistry Approach.

作者信息

Shiuan Ng Li, Raja Mogan Tharishinny, Lee Jinn-Kye, Li Haitao, Ken Lee Chi-Lik, Kwee Lee Hiang

机构信息

Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.

出版信息

Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202313695. doi: 10.1002/anie.202313695. Epub 2023 Oct 25.

Abstract

The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 μmol ⋅ g  ⋅ h ) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal-organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 μmol ⋅ g  ⋅ h ) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications.

摘要

通过光催化水分解生产绿色氢对于可持续氢经济和化学制造至关重要。然而,由于缓慢的四电子析氧反应(OER)和有限的催化剂活性,目前的方法存在产氢速率低(<70 μmol·g⁻¹·h⁻¹)的问题。在此,我们通过利用纳米光催化剂与金属有机框架(MOF)层之间的多功能界面实现了高效的光催化水分解。该功能界面发挥两个关键作用:(1)直接在光催化剂表面富集电子密度以促进催化活性,以及(2)将光生空穴离域到MOF中以增强OER。我们的光催化体系使析氢量比原始光催化剂提高了约100倍,并且即使不使用牺牲剂也能以理想的化学计量比同时产生氧气。值得注意的是,这种独特的设计实现了卓越的产氢性能(519 μmol·g⁻¹·h⁻¹),其表观量子效率比利用空穴清除剂的新兴光催化设计分别高出13倍和8倍。全面的研究强调了界面设计在表面简并光催化剂上产生高能光电子以热力学驱动析氢方面的关键作用,同时利用纳米多孔MOF支架作为有效的光空穴阱来增强OER。我们的界面方法为使用网状化学设计具有多种能源和环境应用的下一代多功能光催化体系创造了巨大机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验