Kao Jui-Cheng, Yu Wei-Yang, Chien Kuo-Chang, Chou Po-Jung, Huang Michael H, Lo Yu-Chieh, Chou Jyh-Pin
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
ACS Nanosci Au. 2025 Jun 5;5(4):314-323. doi: 10.1021/acsnanoscienceau.5c00030. eCollection 2025 Aug 20.
This study investigates the photocatalytic performance of CuO surfaces modified with halogen-substituted phenylacetylenes (4-XA), including 1-ethynyl-4-fluorobenzene (4-FA), 1-chloro-4-ethynylbenzene (4-CA), and 1-bromo-4-ethynylbenzene (4-BA), using an integrated theoretical and experimental approach. Through density functional theory (DFT) calculations and ultraviolet photoelectron spectroscopy (UPS) measurements, we analyze how these molecular decorators affect charge transfer dynamics and the electronic structure of the CuO {100}, {110}, and {111} facets. Two distinct photocatalytic mechanisms are proposed: one where electrons reach the vacuum level through the molecular decorator and another where electrons escape directly through the CuO surface via molecular-induced hybridized states. Our results show that 4-BA-modified {100} surfaces exhibit the strongest enhancement, which is attributed to the presence of in-gap molecular states, increased charge separation, and a significantly reduced work function. Experimental degradation of methyl orange validates the trend 4-BA > 4-CA > 4-FA, consistent with theoretical predictions. These findings highlight the crucial role of band structure engineering and provide guidelines for the rational design of high-performance molecularly decorated photocatalysts.
本研究采用理论与实验相结合的方法,研究了用卤代苯乙炔(4-XA)修饰的CuO表面的光催化性能,其中包括1-乙炔基-4-氟苯(4-FA)、1-氯-4-乙炔基苯(4-CA)和1-溴-4-乙炔基苯(4-BA)。通过密度泛函理论(DFT)计算和紫外光电子能谱(UPS)测量,我们分析了这些分子修饰剂如何影响CuO{100}、{110}和{111}晶面的电荷转移动力学和电子结构。提出了两种不同的光催化机制:一种是电子通过分子修饰剂到达真空能级,另一种是电子通过分子诱导的杂化态直接通过CuO表面逸出。我们的结果表明,4-BA修饰的{100}表面表现出最强的增强作用,这归因于带隙分子态的存在、电荷分离的增加和功函数的显著降低。甲基橙的实验降解验证了4-BA>4-CA>4-FA的趋势,与理论预测一致。这些发现突出了能带结构工程的关键作用,并为高性能分子修饰光催化剂的合理设计提供了指导。