Ng Ronald, Gokhan Ilhan, Stankey Paul, Akar Fadi G, Campbell Stuart G
Yale University, New Haven, United States.
Yale University, United States.
Am J Physiol Heart Circ Physiol. 2023 Oct 13;325(6):H1373-85. doi: 10.1152/ajpheart.00709.2022.
We seek to elucidate the precise nature of mechanical loading that precipitates conduction deficits in a concealed-phase model of arrhythmogenic cardiomyopathy (ACM). ACM is a progressive disorder often resulting from mutations in desmosomal proteins. Exercise has been shown to worsen disease progression and unmask arrhythmia vulnerability, yet the underlying pathomechanisms may depend on the type and intensity of exercise. Because exercise causes myriad changes to multiple inter-dependent hemodynamic parameters, it is difficult to isolate its effects to specific changes in mechanical load. Here, we use engineered heart tissues (EHTs) with iPSC-derived cardiomyocytes expressing R451G desmoplakin, an ACM-linked mutation, which results in a functionally null model of desmoplakin (DSP). We also use a novel bioreactor to independently perturb tissue strain at different time points during the cardiac cycle. We culture EHTs under three strain regimes: normal physiological shortening; increased diastolic stretch, simulating high preload; and isometric culture, simulating high afterload. EHTs that have been cultured isometrically undergo adaptation, with no change in action potential parameters, conduction velocity, or contractile function, a phenotype confirmed by global proteomic analysis. However, when EHTs are subjected to increased diastolic stretch, they exhibit concomitant reductions in conduction velocity and the expression of connexin-43. These effects are rescued by inhibition of both lysosome activity and ERK signaling. Our results indicate that the response of EHTs to mechanical stimuli depends on the strain and the timing of the applied stimulus, with increased diastolic stretch unmasking conduction deficits in a concealed-phase model of ACM.
我们试图阐明在致心律失常性心肌病(ACM)的隐匿期模型中引发传导缺陷的机械负荷的确切性质。ACM是一种进行性疾病,通常由桥粒蛋白突变引起。运动已被证明会加剧疾病进展并揭示心律失常易感性,但其潜在的病理机制可能取决于运动的类型和强度。由于运动导致多个相互依赖的血流动力学参数发生无数变化,因此难以将其影响分离为机械负荷的特定变化。在这里,我们使用工程心脏组织(EHT),其具有表达R451G桥粒斑蛋白的诱导多能干细胞衍生的心肌细胞,这是一种与ACM相关的突变,导致桥粒斑蛋白(DSP)功能缺失模型。我们还使用一种新型生物反应器在心动周期的不同时间点独立扰动组织应变。我们在三种应变状态下培养EHT:正常生理缩短;增加舒张期拉伸,模拟高前负荷;以及等长培养,模拟高后负荷。等长培养的EHT会发生适应性变化,动作电位参数、传导速度或收缩功能均无变化,这一表型通过全局蛋白质组学分析得到证实。然而,当EHT受到增加的舒张期拉伸时,它们会同时出现传导速度降低和连接蛋白43表达减少的情况。通过抑制溶酶体活性和ERK信号传导可挽救这些效应。我们的结果表明,EHT对机械刺激的反应取决于应变和施加刺激的时间,在ACM的隐匿期模型中,增加的舒张期拉伸会揭示传导缺陷。