Suppr超能文献

工程化组织几何结构和桥粒斑蛋白-2调节人诱导多能干细胞衍生心肌细胞的电生理学。

Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes.

作者信息

Simmons Daniel W, Malayath Ganesh, Schuftan David R, Guo Jingxuan, Oguntuyo Kasoorelope, Ramahdita Ghiska, Sun Yuwen, Jordan Samuel D, Munsell Mary K, Kandalaft Brennan, Pear Missy, Rentschler Stacey L, Huebsch Nathaniel

机构信息

Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA.

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA.

出版信息

APL Bioeng. 2024 Mar 11;8(1):016118. doi: 10.1063/5.0160677. eCollection 2024 Mar.

Abstract

Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing " like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (HM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (Na1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated HM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within HM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2 tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout HM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.

摘要

工程化心脏组织已被创建出来,用于在比二维单层培养更接近心肌的环境中研究心脏生物学和疾病。先前发表的研究表明,几何各向异性的微环境对于从未成熟心肌细胞诱导出“类”生理学至关重要。我们假设工程化组织中心肌细胞的排列程度和预应力是由组织几何形状调节的,随后驱动电生理发育。因此,我们研究了组织几何形状对由人诱导多能干细胞(iPSC)工程化构建的微心脏肌肉阵列(HM)电生理的影响。细长的组织几何形状引发了心肌细胞形状和电生理变化,导致适应性改变,在每个收缩周期中增加了钙摄取。引人注目的是,药理学研究表明,钠通道功能需要一定阈值的预应力和/或细胞排列,而L型钙通道和快速整流钾通道对这些变化基本不敏感。同时,组织伸长上调了钠通道(Na1.5)和缝隙连接(连接蛋白43,Cx43)蛋白表达。基于这些观察结果,我们利用细长的HM来研究桥粒蛋白2(PKP2)功能丧失突变的影响,PKP2是一种与致心律失常疾病有关的桥粒蛋白。在HM中,PKP2基因敲除的心肌细胞具有与同基因对照中观察到的相似的细胞形态。然而,PKP2组织表现出较低的传导速度且无功能性钠电流。PKP2基因敲除的HM表现出钠通道的几何相关上调,但Cx43未上调,这表明翻译后机制,包括离子通道 - 缝隙连接通讯的缺乏,可能是在携带这种遗传缺陷的组织中观察到较低传导速度的基础。总之,这些观察结果表明,简单、可扩展的微组织系统可以提供诱导iPS - CM电重塑所需的生理应力,从而能够研究与疾病相关的基因组变异的电生理后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7cc/10932571/610768991fec/ABPID9-000008-016118_1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验