Mezzano Valeria, Liang Yan, Wright Adam T, Lyon Robert C, Pfeiffer Emily, Song Michael Y, Gu Yusu, Dalton Nancy D, Scheinman Melvin, Peterson Kirk L, Evans Sylvia M, Fowler Steven, Cerrone Marina, McCulloch Andrew D, Sheikh Farah
Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA.
Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA.
Cardiovasc Res. 2016 Aug 1;111(3):274-86. doi: 10.1093/cvr/cvw083. Epub 2016 Apr 20.
Current mechanisms driving cardiac pacemaker function have focused on ion channel and gap junction channel function, which are essential for action potential generation and propagation between pacemaker cells. However, pacemaker cells also harbour desmosomes that structurally anchor pacemaker cells to each other in tissue, but their role in pacemaker function remains unknown.
To determine the role of desmosomes in pacemaker function, we generated a novel mouse model harbouring cardiac conduction-specific ablation (csKO) of the central desmosomal protein, desmoplakin (DSP) using the Hcn4-Cre-ERT2 mouse line. Hcn4-Cre targets cells of the adult mouse sinoatrial node (SAN) and can ablate DSP expression in the adult DSP csKO SAN resulting in specific loss of desmosomal proteins and structures. Dysregulation of DSP via loss-of-function (adult DSP csKO mice) and mutation (clinical case of a patient harbouring a pathogenic DSP variant) in mice and man, respectively, revealed that desmosomal dysregulation is associated with a primary phenotype of increased sinus pauses/dysfunction in the absence of cardiomyopathy. Underlying defects in beat-to-beat regulation were also observed in DSP csKO mice in vivo and intact atria ex vivo. DSP csKO SAN exhibited migrating lead pacemaker sites associated with connexin 45 loss. In vitro studies exploiting ventricular cardiomyocytes that harbour DSP loss and concurrent early connexin loss phenocopied the loss of beat-to-beat regulation observed in DSP csKO mice and atria, extending the importance of DSP-associated mechanisms in driving beat-to-beat regulation of working cardiomyocytes.
We provide evidence of a mechanism that implicates an essential role for desmosomes in cardiac pacemaker function, which has broad implications in better understanding mechanisms underlying beat-to-beat regulation as well as sinus node disease and dysfunction.
目前驱动心脏起搏器功能的机制主要集中在离子通道和缝隙连接通道功能上,这些对于动作电位的产生以及起搏器细胞之间的传播至关重要。然而,起搏器细胞中也含有桥粒,其在组织中可将起搏器细胞彼此结构上锚定在一起,但其在起搏器功能中的作用仍不清楚。
为了确定桥粒在起搏器功能中的作用,我们利用Hcn4-Cre-ERT2小鼠品系构建了一种新型小鼠模型,该模型中心桥粒蛋白桥粒斑蛋白(DSP)在心脏传导方面特异性缺失(csKO)。Hcn4-Cre靶向成年小鼠窦房结(SAN)细胞,可使成年DSP csKO SAN中的DSP表达缺失,导致桥粒蛋白和结构的特异性丧失。分别通过小鼠功能缺失(成年DSP csKO小鼠)和人类突变(一名携带致病性DSP变异的患者的临床病例)对DSP进行失调研究,结果显示,在没有心肌病的情况下,桥粒失调与窦性停搏/功能障碍增加的主要表型相关。在DSP csKO小鼠体内和离体完整心房中也观察到逐搏调节的潜在缺陷。DSP csKO SAN表现出与连接蛋白45缺失相关的起搏点迁移现象。利用存在DSP缺失和同时早期连接蛋白缺失的心室心肌细胞进行的体外研究,模拟了在DSP csKO小鼠和心房中观察到的逐搏调节丧失,扩展了DSP相关机制在驱动工作心肌细胞逐搏调节中的重要性。
我们提供了证据表明桥粒在心脏起搏器功能中起着重要作用,这对于更好地理解逐搏调节以及窦房结疾病和功能障碍的潜在机制具有广泛意义。