功能化纳米器件靶向肿瘤细胞叶酸受体的优化设计的分子动力学。
Molecular Dynamics for the Optimal Design of Functionalized Nanodevices to Target Folate Receptors on Tumor Cells.
机构信息
Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
出版信息
ACS Biomater Sci Eng. 2023 Nov 13;9(11):6123-6137. doi: 10.1021/acsbiomaterials.3c00942. Epub 2023 Oct 13.
Atomistic details on the mechanism of targeting activity by biomedical nanodevices of specific receptors are still scarce in the literature, where mostly ligand/receptor pairs are modeled. Here, we use atomistic molecular dynamics (MD) simulations, free energy calculations, and machine learning approaches on the case study of spherical TiO nanoparticles (NPs) functionalized with folic acid (FA) as the targeting ligand of the folate receptor (FR). We consider different FA densities on the surface and different anchoring approaches, i.e., direct covalent bonding of FA γ-carboxylate or through polyethylene glycol spacers. By molecular docking, we first identify the lowest energy conformation of one FA inside the FR binding pocket from the X-ray crystal structure, which becomes the starting point of classical MD simulations in a realistic physiological environment. We estimate the binding free energy to be compared with the existing experimental data. Then, we increase complexity and go from the isolated FA to a nanosystem decorated with several FAs. Within the simulation time framework, we confirm the stability of the ligand-receptor interaction, even in the presence of the NP (with or without a spacer), and no significant modification of the protein secondary structure is observed. Our study highlights the crucial role played by the spacer, FA protonation state, and density, which are parameters that can be controlled during the nanodevice preparation step.
在文献中,针对特定受体的生物医学纳米器件靶向活性的机制的原子细节仍然很少,大多数情况下都是对配体/受体对进行建模。在这里,我们使用原子分子动力学(MD)模拟、自由能计算和机器学习方法,以叶酸(FA)功能化的球形 TiO 纳米粒子(NP)作为叶酸受体(FR)的靶向配体为例进行研究。我们考虑了表面上不同的 FA 密度和不同的锚定方法,即 FA γ-羧酸盐的直接共价键合或通过聚乙二醇间隔物。通过分子对接,我们首先从 X 射线晶体结构中确定 FR 结合口袋内一个 FA 的最低能量构象,这成为在现实生理环境中进行经典 MD 模拟的起点。我们估计结合自由能以与现有实验数据进行比较。然后,我们增加复杂性,从孤立的 FA 到用几个 FA 修饰的纳米系统。在模拟时间框架内,我们确认了配体-受体相互作用的稳定性,即使在存在 NP(带或不带间隔物)的情况下也是如此,并且没有观察到蛋白质二级结构的明显变化。我们的研究强调了间隔物、FA 质子化状态和密度的关键作用,这些参数可以在纳米器件制备步骤中进行控制。