文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Application of molecular dynamics simulation in self-assembled cancer nanomedicine.

作者信息

Xu Xueli, Liu Ao, Liu Shuangqing, Ma Yanling, Zhang Xinyu, Zhang Meng, Zhao Jinhua, Sun Shuo, Sun Xiao

机构信息

School of Science, Shandong Jianzhu University, Jinan, 250101, China.

School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.

出版信息

Biomater Res. 2023 May 4;27(1):39. doi: 10.1186/s40824-023-00386-7.


DOI:10.1186/s40824-023-00386-7
PMID:37143168
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10161522/
Abstract

Self-assembled nanomedicine holds great potential in cancer theragnostic. The structures and dynamics of nanomedicine can be affected by a variety of non-covalent interactions, so it is essential to ensure the self-assembly process at atomic level. Molecular dynamics (MD) simulation is a key technology to link microcosm and macroscale. Along with the rapid development of computational power and simulation methods, scientists could simulate the specific process of intermolecular interactions. Thus, some experimental observations could be explained at microscopic level and the nanomedicine synthesis process would have traces to follow. This review not only outlines the concept, basic principle, and the parameter setting of MD simulation, but also highlights the recent progress in MD simulation for self-assembled cancer nanomedicine. In addition, the physicochemical parameters of self-assembly structure and interaction between various assembled molecules under MD simulation are also discussed. Therefore, this review will help advanced and novice researchers to quickly zoom in on fundamental information and gather some thought-provoking ideas to advance this subfield of self-assembled cancer nanomedicine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/1349bdf9b57a/40824_2023_386_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/5ff25124bfc7/40824_2023_386_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/d9893ae37fcd/40824_2023_386_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/3a7ef3bdc643/40824_2023_386_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/48b47657fc06/40824_2023_386_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/e36f0e4265e1/40824_2023_386_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/9d31bfbfeaa6/40824_2023_386_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/4041cbdfdc59/40824_2023_386_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/465cbb5c4793/40824_2023_386_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/e251d39675ad/40824_2023_386_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/bbae898fc32d/40824_2023_386_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/6d1103121457/40824_2023_386_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/dad403890071/40824_2023_386_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/a6b74db78779/40824_2023_386_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/c587f781bf40/40824_2023_386_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/1349bdf9b57a/40824_2023_386_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/5ff25124bfc7/40824_2023_386_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/d9893ae37fcd/40824_2023_386_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/3a7ef3bdc643/40824_2023_386_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/48b47657fc06/40824_2023_386_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/e36f0e4265e1/40824_2023_386_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/9d31bfbfeaa6/40824_2023_386_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/4041cbdfdc59/40824_2023_386_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/465cbb5c4793/40824_2023_386_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/e251d39675ad/40824_2023_386_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/bbae898fc32d/40824_2023_386_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/6d1103121457/40824_2023_386_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/dad403890071/40824_2023_386_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/a6b74db78779/40824_2023_386_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/c587f781bf40/40824_2023_386_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8302/10161522/1349bdf9b57a/40824_2023_386_Fig15_HTML.jpg

相似文献

[1]
Application of molecular dynamics simulation in self-assembled cancer nanomedicine.

Biomater Res. 2023-5-4

[2]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[3]
Self-assembled nanomaterials for ferroptosis-based cancer theranostics.

Biomater Sci. 2023-3-14

[4]
Biomimetic Nanomaterials Triggered Ferroptosis for Cancer Theranostics.

Front Chem. 2021-11-16

[5]
Self-assembly drugs: from micelles to nanomedicine.

Curr Top Med Chem. 2014-3

[6]
Interfacial properties and design of functional energy materials.

Acc Chem Res. 2014-6-25

[7]
From self-assembly fundamental knowledge to nanomedicine developments.

Adv Colloid Interface Sci. 2013-10-17

[8]
Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment.

J Control Release. 2021-2-10

[9]
Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications.

Adv Healthc Mater. 2018-8-6

[10]
Enzyme-mediated intratumoral self-assembly of nanotheranostics for enhanced imaging and tumor therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-7

引用本文的文献

[1]
Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy.

Pharmaceutics. 2025-8-10

[2]
Fabrication, characterization, and docking studies of furosemide-loaded nanosponges using the emulsion solvent diffusion method.

Nanomedicine (Lond). 2025-6

[3]
Nanomaterial-Based Autophagy Modulation: Multiple Weapons to Inflame Immune Systems and the Tumor Microenvironment.

Biomater Res. 2025-4-14

[4]
Lactoferrin as a Versatile Agent in Nanoparticle Applications: From Therapeutics to Agriculture.

Nanomaterials (Basel). 2024-12-16

[5]
Hybrid Homodimeric Prodrug Nanoassemblies for Low-Toxicity and Synergistic Chemophotodynamic Therapy of Melanoma.

Biomater Res. 2024-11-1

[6]
Recent Advances and Mechanism of Nanomaterials Promoting Tumor Metastasis.

Environ Health (Wash). 2023-11-9

[7]
Integrating computational methods and experimental validation reveals the pharmacological mechanism of (L.) Baker targeting major proteins in breast cancer.

Heliyon. 2024-10-2

[8]
M2 Macrophage-Derived Small Extracellular Vesicles Ameliorate Pyroptosis and Intervertebral Disc Degeneration.

Biomater Res. 2024-7-1

[9]
Blind Spots in Development of Nanomedicines.

Technol Cancer Res Treat. 2024

[10]
Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies.

Biomedicines. 2024-1-16

本文引用的文献

[1]
Dynamic tagging to drive arginine nano-assembly to metabolically potentiate immune checkpoint blockade therapy.

Biomaterials. 2023-1

[2]
GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.

J Chem Theory Comput. 2022-12-13

[3]
Cooperative coordination-mediated multi-component self-assembly of "all-in-one" nanospike theranostic nano-platform for MRI-guided synergistic therapy against breast cancer.

Acta Pharm Sin B. 2022-9

[4]
Branched polyethyleneimine: CHARMM force field and molecular dynamics simulations.

J Comput Chem. 2022-12-5

[5]
Molecular Insights into the Wall Slip Behavior of Pseudoplastic Polymer Melt in Nanochannels during Micro Injection Molding.

Polymers (Basel). 2022-8-8

[6]
Extending the Martini 3 Coarse-Grained Force Field to Carbohydrates.

J Chem Theory Comput. 2022-8-9

[7]
Co-delivery of paclitaxel and gemcitabine a self-assembling nanoparticle for targeted treatment of breast cancer.

RSC Adv. 2019-2-13

[8]
Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death.

Theranostics. 2022

[9]
Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy.

Acta Pharm Sin B. 2022-1

[10]
Exploration of Novel Tubulin Inhibitors: A Combination of Docking and Molecular Dynamics Simulations, Pharmacophore Modeling, and Virtual Screening.

Comput Math Methods Med. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索