Suppr超能文献

基于近红外光谱结合深度学习的香附不同炮制品的分类及快速无损质量评价

Classification and rapid non-destructive quality evaluation of different processed products of Cyperus rotundus based on near-infrared spectroscopy combined with deep learning.

机构信息

College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.

College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.

出版信息

Talanta. 2024 Feb 1;268(Pt 1):125266. doi: 10.1016/j.talanta.2023.125266. Epub 2023 Oct 8.

Abstract

The quality of traditional Chinese medicine is very important for human health, but the traditional quality control method is very tedious, which leads to the substandard quality of many traditional Chinese medicine. In order to solve the problem of time-consuming and laborious traditional quality control methods, this study takes traditional Chinese medicine Cyperus rotundus as an example, a comprehensive strategy of near-infrared (NIR) spectroscopy combined with One-dimensional convolutional neural network (1D-CNN) and chaotic map dung beetle optimization (CDBO) algorithm combined with BP neural network (BPNN) is proposed. This strategy has the advantages of fast and non-destructive. It can not only qualitatively distinguish Cyperus rotundus and various processed products, but also quantitatively predict two bioactive components. In classification, 1D-CNN successfully distinguished four kinds of processed products of Cyperus rotundus with 100 % accuracy. Quantitatively, a CDBO algorithm is proposed to optimize the performance of the BPNN quantitative model of two terpenoids, and compared with the BP, whale optimization algorithm (WOA)-BP, sparrow optimization algorithm (SSA)-BP, grey wolf optimization (GWO)-BP and particle swarm optimization (PSO)-BP models. The results show that the CDBO-BPNN model has the smallest error and has a significant advantage in predicting the content of active components in different processed products. To sum up, it is feasible to use near infrared spectroscopy to quickly evaluate the effect of processing methods on the quality of Cyperus rotundus, which provides a meaningful reference for the quality control of traditional Chinese medicine with many other processing methods.

摘要

中药材的质量对人类健康非常重要,但传统的质量控制方法非常繁琐,导致许多中药材质量不达标。为了解决传统质量控制方法耗时费力的问题,本研究以传统中药材香附为例,提出了一种近红外(NIR)光谱结合一维卷积神经网络(1D-CNN)和混沌地图蜣螂优化(CDBO)算法与BP 神经网络(BPNN)相结合的综合策略。该策略具有快速、无损的优点,不仅可以定性地区分香附和各种炮制产品,还可以定量预测两种生物活性成分。在分类中,1D-CNN 成功地以 100%的准确率区分了香附的四种炮制产品。在定量方面,提出了一种 CDBO 算法来优化两种萜类化合物的 BPNN 定量模型的性能,并与 BP、鲸鱼优化算法(WOA)-BP、麻雀优化算法(SSA)-BP、灰狼优化算法(GWO)-BP 和粒子群优化(PSO)-BP 模型进行比较。结果表明,CDBO-BPNN 模型的误差最小,在预测不同炮制产品中活性成分的含量方面具有显著优势。总之,使用近红外光谱快速评估炮制方法对香附质量的影响是可行的,这为其他许多炮制方法的中药质量控制提供了有意义的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验