Suppr超能文献

人工智能临床辅助决策支持系统对提高医院相关性静脉血栓栓塞症发生率的有效性:一项前瞻性、随机对照研究。

Effectiveness of an artificial intelligence clinical assistant decision support system to improve the incidence of hospital-associated venous thromboembolism: a prospective, randomised controlled study.

机构信息

Dean's Office, RuiJin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China.

Shanghai Venous Thromboembolism Alliance, Shanghai, China.

出版信息

BMJ Open Qual. 2023 Oct;12(4). doi: 10.1136/bmjoq-2023-002267.

Abstract

BACKGROUND

Thromboprophylaxis has been determined to be safe, effective and cost-effective for hospitalised patients at venous thromboembolism (VTE) risk. However, Chinese medical institutions have not yet fully used or improperly used thromboprophylaxis. The effectiveness of information technology applied to thromboprophylaxis in hospitalised patients has been proved in many retrospective studies, lacking of prospective research evidence.

METHODS

All hospitalised patients aged >18 years not discharged within 24 hours from 1 September 2020 to 31 May 2021 were prospectively enrolled. Patients were randomly assigned to the control (9890 patients) or intervention group (9895 patients). The control group implemented conventional VTE prevention programmes; the intervention group implemented an Artificial Intelligence Clinical Assistant Decision Support System (AI-CDSS) on the basis of conventional prevention. Intergroup demographics, disease status, hospital length of stay (LOS), VTE risk assessment and VTE prophylaxis were compared using the χ test, Fisher's exact test, t-test or Wilcoxon rank-sum test. Univariate and multivariate logistic regressions were used to explore the risk factor of VTE.

RESULTS

The control and intervention groups had similar baseline characteristics. The mean age was 58.32±15.41 years, and mean LOS was 7.82±7.07 days. In total, 5027 (25.40%) and 2707 (13.67%) patients were assessed as having intermediate-to-high VTE risk and high bleeding risk, respectively. The incidence of hospital-associated VTE (HA-VTE) was 0.38%, of which 86.84% had deep vein thrombosis. Compared with the control group, the incidence of HA-VTE decreased by 46.00%, mechanical prophylaxis rate increased by 24.00% and intensity of drug use increased by 9.72% in the intervention group. However, AI-CDSS use did not increase the number of clinical diagnostic tests, prophylaxis rate or appropriate prophylaxis rate.

CONCLUSIONS

Thromboprophylaxis is inadequate in hospitalised patients with VTE risk. The role of AI-CDSS in VTE risk management is unknown and needs further in-depth study.

TRIAL REGISTRATION NUMBER

ChiCTR2000035452.

摘要

背景

静脉血栓栓塞症(VTE)风险住院患者的血栓预防已被确定为安全、有效且具有成本效益。然而,中国医疗机构尚未充分使用或不当使用血栓预防。信息技术在住院患者血栓预防中的应用已在许多回顾性研究中得到证实,但缺乏前瞻性研究证据。

方法

2020 年 9 月 1 日至 2021 年 5 月 31 日,前瞻性纳入所有年龄>18 岁且入院 24 小时内未出院的住院患者。患者被随机分配到对照组(9890 例)或干预组(9895 例)。对照组实施常规 VTE 预防方案;干预组在常规预防的基础上实施人工智能临床助理决策支持系统(AI-CDSS)。使用 χ 检验、Fisher 确切检验、t 检验或 Wilcoxon 秩和检验比较组间人口统计学、疾病状态、住院时间(LOS)、VTE 风险评估和 VTE 预防。使用单变量和多变量逻辑回归探讨 VTE 的危险因素。

结果

对照组和干预组具有相似的基线特征。平均年龄为 58.32±15.41 岁,平均 LOS 为 7.82±7.07 天。共有 5027(25.40%)和 2707(13.67%)例患者被评估为具有中高度 VTE 风险和高出血风险。医院相关性 VTE(HA-VTE)的发生率为 0.38%,其中 86.84%为深静脉血栓形成。与对照组相比,干预组 HA-VTE 的发生率降低了 46.00%,机械预防率增加了 24.00%,药物使用率增加了 9.72%。然而,AI-CDSS 的使用并未增加临床诊断检测、预防率或适当预防率的数量。

结论

VTE 风险住院患者的血栓预防不足。AI-CDSS 在 VTE 风险管理中的作用尚不清楚,需要进一步深入研究。

试验注册

ChiCTR2000035452。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/10582876/3b18e3381be9/bmjoq-2023-002267f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验