Suppr超能文献

应用神经常微分方程分析特里尔社会应激测试中的激素动态变化。

Applying neural ordinary differential equations for analysis of hormone dynamics in Trier Social Stress Tests.

作者信息

Parker Christopher, Nelson Erik, Zhang Tongli

机构信息

Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

出版信息

Front Genet. 2024 Aug 1;15:1375468. doi: 10.3389/fgene.2024.1375468. eCollection 2024.

Abstract

This study explores using Neural Ordinary Differential Equations (NODEs) to analyze hormone dynamics in the hypothalamicpituitary-adrenal (HPA) axis during Trier Social Stress Tests (TSST) to classify patients with Major Depressive Disorder (MDD). Data from TSST were used, measuring plasma ACTH and cortisol concentrations. NODE models replicated hormone changes without prior knowledge of the stressor. The derived vector fields from NODEs were input into a Convolutional Neural Network (CNN) for patient classification, validated through cross-validation (CV) procedures. NODE models effectively captured system dynamics, embedding stress effects in the vector fields. The classification procedure yielded promising results, with the 1x1 CV achieving an AUROC score that correctly identified 83% of Atypical MDD patients and 53% of healthy controls. The 2x2 CV produced similar outcomes, supporting model robustness. Our results demonstrate the potential of combining NODEs and CNNs to classify patients based on disease state, providing a preliminary step towards further research using the HPA axis stress response as an objective biomarker for MDD.

摘要

本研究探索使用神经常微分方程(NODEs)来分析在特里尔社会应激测试(TSST)期间下丘脑 - 垂体 - 肾上腺(HPA)轴中的激素动态,以对重度抑郁症(MDD)患者进行分类。使用了来自TSST的数据,测量血浆促肾上腺皮质激素(ACTH)和皮质醇浓度。NODE模型在无需应激源先验知识的情况下复制了激素变化。从NODEs导出的向量场被输入到卷积神经网络(CNN)中进行患者分类,并通过交叉验证(CV)程序进行验证。NODE模型有效地捕捉了系统动态,将应激效应嵌入到向量场中。分类程序产生了有前景的结果,1x1交叉验证获得的受试者工作特征曲线下面积(AUROC)分数正确识别了83%的非典型MDD患者和53%的健康对照。2x2交叉验证产生了类似的结果,支持了模型的稳健性。我们的结果证明了结合NODEs和CNNs根据疾病状态对患者进行分类的潜力,为进一步研究将HPA轴应激反应作为MDD的客观生物标志物迈出了初步步伐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a5/11324453/d0e6f386f1e9/fgene-15-1375468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验