Suppr超能文献

利用深度学习技术对连续的视神经盘照片进行视野进展预测。

Prediction of visual field progression with serial optic disc photographs using deep learning.

机构信息

Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, California, USA.

Department of Computer Science, Pepperdine University, Malibu, California, USA.

出版信息

Br J Ophthalmol. 2024 Jul 23;108(8):1107-1113. doi: 10.1136/bjo-2023-324277.

Abstract

AIM

We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.

METHODS

3919 eyes (2259 patients) with ≥2 ODPs at least 2 years apart, and ≥5 24-2 VF exams spanning ≥3 years of follow-up were included. Serial VF mean deviation (MD) rates of change were estimated starting at the fifth visit and subsequently by adding visits until final visit. VF progression was defined as a statistically significant negative slope at two consecutive visits and final visit. We built a twin-neural network with ResNet50-backbone. A pair of ODPs acquired up to a year before the VF progression date or the last VF in non-progressing eyes were included as input. Primary outcome measures were area under the receiver operating characteristic curve (AUC) and model accuracy.

RESULTS

The average (SD) follow-up time and baseline VF MD were 8.1 (4.8) years and -3.3 (4.9) dB, respectively. VF progression was identified in 761 eyes (19%). The median (IQR) time to progression in progressing eyes was 7.3 (4.5-11.1) years. The AUC and accuracy for predicting VF progression were 0.862 (0.812-0.913) and 80.0% (73.9%-84.6%). When only fast-progressing eyes were considered (MD rate < -1.0 dB/year), AUC increased to 0.926 (0.857-0.994).

CONCLUSIONS

A deep learning model can predict subsequent glaucoma progression from longitudinal ODPs with clinically relevant accuracy. This model may be implemented, after validation, for predicting glaucoma progression in the clinical setting.

摘要

目的

我们检验了一个假设,即基于在随访期间较早时间点获得的纵向视神经盘照片(ODP)对视野(VF)进展进行预测。

方法

纳入了 3919 只眼(2259 例患者),这些眼至少有 2 次 ODP,时间间隔至少 2 年,且至少有 5 次 24-2 视野检查,随访时间至少 3 年。从第 5 次就诊开始,随后每次就诊时都估计连续视野平均偏差(MD)变化率,直到最后一次就诊。VF 进展定义为在连续两次就诊和最后一次就诊时出现统计学上显著的负斜率。我们构建了一个带有 ResNet50 骨干的双神经网络。将在 VF 进展日期之前或非进展眼中最后一次 VF 之前的 1 年内获得的一对 ODP 作为输入。主要观察指标为接收者操作特征曲线下面积(AUC)和模型准确性。

结果

平均(SD)随访时间和基线 VF MD 分别为 8.1(4.8)年和-3.3(4.9)dB。在 761 只眼中(19%)发现了 VF 进展。进展眼中进展的中位(IQR)时间为 7.3(4.5-11.1)年。预测 VF 进展的 AUC 和准确性分别为 0.862(0.812-0.913)和 80.0%(73.9%-84.6%)。当仅考虑快速进展眼(MD 率<-1.0 dB/年)时,AUC 增加至 0.926(0.857-0.994)。

结论

深度学习模型可以从纵向 ODP 中以具有临床相关性的准确性预测后续青光眼进展。在经过验证后,该模型可能会在临床环境中用于预测青光眼进展。

相似文献

1
Prediction of visual field progression with serial optic disc photographs using deep learning.
Br J Ophthalmol. 2024 Jul 23;108(8):1107-1113. doi: 10.1136/bjo-2023-324277.
2
Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning.
Am J Ophthalmol. 2024 Jun;262:141-152. doi: 10.1016/j.ajo.2024.02.007. Epub 2024 Feb 12.
3
Optic disc progression and rates of visual field change in treated glaucoma.
Acta Ophthalmol. 2013 Mar;91(2):e86-91. doi: 10.1111/j.1755-3768.2012.02577.x. Epub 2013 Jan 29.
4
Factors affecting rates of visual field progression in glaucoma patients with optic disc hemorrhage.
Ophthalmology. 2010 Jan;117(1):24-9. doi: 10.1016/j.ophtha.2009.06.028. Epub 2009 Nov 6.
6
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
Ophthalmology. 2021 Mar;128(3):383-392. doi: 10.1016/j.ophtha.2020.07.045. Epub 2020 Jul 28.
7
Effect of focal lamina cribrosa defect on glaucomatous visual field progression.
Ophthalmology. 2014 Aug;121(8):1524-30. doi: 10.1016/j.ophtha.2014.02.017. Epub 2014 Mar 31.
10
Pointwise Methods to Measure Long-term Visual Field Progression in Glaucoma.
JAMA Ophthalmol. 2020 May 1;138(5):536-543. doi: 10.1001/jamaophthalmol.2020.0647.

引用本文的文献

1
Deep Learning-Based Prediction of Glaucoma Severity and Progression Using Imo/TEMPO Screening Program.
Ophthalmol Sci. 2025 Apr 28;5(6):100805. doi: 10.1016/j.xops.2025.100805. eCollection 2025 Nov-Dec.
3
Advances in Glaucoma Diagnosis and Treatment: Integrating Innovations for Enhanced Patient Outcomes.
Biomedicines. 2025 Apr 2;13(4):850. doi: 10.3390/biomedicines13040850.
4
Application of artificial intelligence in glaucoma care: An updated review.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):340-351. doi: 10.4103/tjo.TJO-D-24-00044. eCollection 2024 Jul-Sep.
5
Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning.
Am J Ophthalmol. 2024 Jun;262:141-152. doi: 10.1016/j.ajo.2024.02.007. Epub 2024 Feb 12.

本文引用的文献

1
Validation of Rates of Mean Deviation Change as Clinically Relevant End Points for Glaucoma Progression.
Ophthalmology. 2023 May;130(5):469-477. doi: 10.1016/j.ophtha.2022.12.025. Epub 2022 Dec 24.
2
Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data.
Ophthalmology. 2021 Jul;128(7):1016-1026. doi: 10.1016/j.ophtha.2020.12.020. Epub 2020 Dec 25.
3
Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms.
Transl Vis Sci Technol. 2020 Apr 28;9(2):27. doi: 10.1167/tvst.9.2.27. eCollection 2020 Apr.
4
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
Ophthalmology. 2021 Mar;128(3):383-392. doi: 10.1016/j.ophtha.2020.07.045. Epub 2020 Jul 28.
6
Macular imaging with optical coherence tomography in glaucoma.
Surv Ophthalmol. 2020 Nov-Dec;65(6):597-638. doi: 10.1016/j.survophthal.2020.03.002. Epub 2020 Mar 19.
7
Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
JAMA Ophthalmol. 2020 Apr 1;138(4):333-339. doi: 10.1001/jamaophthalmol.2019.5983.
8
Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression.
Transl Vis Sci Technol. 2019 Sep 11;8(5):2. doi: 10.1167/tvst.8.5.2. eCollection 2019 Sep.
9
Comparison of Rates of Fast and Catastrophic Visual Field Loss in Three Glaucoma Subtypes.
Invest Ophthalmol Vis Sci. 2019 Jan 2;60(1):161-167. doi: 10.1167/iovs.18-25391.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验