Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, California, USA.
Department of Computer Science, Pepperdine University, Malibu, California, USA.
Br J Ophthalmol. 2024 Jul 23;108(8):1107-1113. doi: 10.1136/bjo-2023-324277.
We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.
3919 eyes (2259 patients) with ≥2 ODPs at least 2 years apart, and ≥5 24-2 VF exams spanning ≥3 years of follow-up were included. Serial VF mean deviation (MD) rates of change were estimated starting at the fifth visit and subsequently by adding visits until final visit. VF progression was defined as a statistically significant negative slope at two consecutive visits and final visit. We built a twin-neural network with ResNet50-backbone. A pair of ODPs acquired up to a year before the VF progression date or the last VF in non-progressing eyes were included as input. Primary outcome measures were area under the receiver operating characteristic curve (AUC) and model accuracy.
The average (SD) follow-up time and baseline VF MD were 8.1 (4.8) years and -3.3 (4.9) dB, respectively. VF progression was identified in 761 eyes (19%). The median (IQR) time to progression in progressing eyes was 7.3 (4.5-11.1) years. The AUC and accuracy for predicting VF progression were 0.862 (0.812-0.913) and 80.0% (73.9%-84.6%). When only fast-progressing eyes were considered (MD rate < -1.0 dB/year), AUC increased to 0.926 (0.857-0.994).
A deep learning model can predict subsequent glaucoma progression from longitudinal ODPs with clinically relevant accuracy. This model may be implemented, after validation, for predicting glaucoma progression in the clinical setting.
我们检验了一个假设,即基于在随访期间较早时间点获得的纵向视神经盘照片(ODP)对视野(VF)进展进行预测。
纳入了 3919 只眼(2259 例患者),这些眼至少有 2 次 ODP,时间间隔至少 2 年,且至少有 5 次 24-2 视野检查,随访时间至少 3 年。从第 5 次就诊开始,随后每次就诊时都估计连续视野平均偏差(MD)变化率,直到最后一次就诊。VF 进展定义为在连续两次就诊和最后一次就诊时出现统计学上显著的负斜率。我们构建了一个带有 ResNet50 骨干的双神经网络。将在 VF 进展日期之前或非进展眼中最后一次 VF 之前的 1 年内获得的一对 ODP 作为输入。主要观察指标为接收者操作特征曲线下面积(AUC)和模型准确性。
平均(SD)随访时间和基线 VF MD 分别为 8.1(4.8)年和-3.3(4.9)dB。在 761 只眼中(19%)发现了 VF 进展。进展眼中进展的中位(IQR)时间为 7.3(4.5-11.1)年。预测 VF 进展的 AUC 和准确性分别为 0.862(0.812-0.913)和 80.0%(73.9%-84.6%)。当仅考虑快速进展眼(MD 率<-1.0 dB/年)时,AUC 增加至 0.926(0.857-0.994)。
深度学习模型可以从纵向 ODP 中以具有临床相关性的准确性预测后续青光眼进展。在经过验证后,该模型可能会在临床环境中用于预测青光眼进展。