Suppr超能文献

利用长期眼压变异性数据评估原发性开角型青光眼预测模型:两项随机临床试验的二次分析。

Evaluation of a Primary Open-Angle Glaucoma Prediction Model Using Long-term Intraocular Pressure Variability Data: A Secondary Analysis of 2 Randomized Clinical Trials.

机构信息

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St Louis, St Louis, Missouri.

Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, Missouri.

出版信息

JAMA Ophthalmol. 2020 Jul 1;138(7):780-788. doi: 10.1001/jamaophthalmol.2020.1902.

Abstract

IMPORTANCE

The contribution of long-term intraocular pressure (IOP) variability to the development of primary open-angle glaucoma is still controversial.

OBJECTIVE

To assess whether long-term IOP variability data improve a prediction model for the development of primary open-angle glaucoma (POAG) in individuals with untreated ocular hypertension.

DESIGN, SETTING, AND PARTICIPANTS: This post hoc secondary analysis of 2 randomized clinical trials included data from 709 of 819 participants in the observation group of the Ocular Hypertension Treatment Study (OHTS) followed up from February 28, 1994, to June 1, 2002, and 397 of 500 participants in the placebo group of the European Glaucoma Prevention Study (EGPS) followed up from January 1, 1997, to September 30, 2003. Data analyses were completed between January 1, 2019, and March 15, 2020.

EXPOSURES

The original prediction model for the development of POAG included the following baseline factors: age, IOP, central corneal thickness, vertical cup-disc ratio, and pattern SD. This analysis tested whether substitution of baseline IOP with mean follow-up IOP, SD of IOP, maximum IOP, range of IOP, or coefficient of variation IOP would improve predictive accuracy.

MAIN OUTCOMES AND MEASURES

The C statistic was used to compare the predictive accuracy of multivariable landmark Cox proportional hazards regression models for the development of POAG.

RESULTS

Data from the OHTS consisted of 97 POAG end points from 709 of 819 participants (416 [58.7%] women; 177 [25.0%] African American and 490 [69.1%] white; mean [SD] age, 55.7 [9.59] years; median [range] follow-up, 6.9 [0.96-8.15] years). Data from the EGPS consisted of 44 POAG end points from 397 of 500 participants in the placebo group (201 [50.1%] women; 397 [100%] white; mean [SD] age, 57.8 [9.76] years; median [range] follow-up, 4.9 [1.45-5.76] years). The C statistic for the original prediction model was 0.741. When a measure of follow-up IOP was substituted for baseline IOP in this prediction model, the C statistics were as follows: mean follow-up IOP, 0.784; maximum IOP, 0.781; SD of IOP, 0.745; range of IOP, 0.741; and coefficient of variation IOP, 0.729. The C statistics in the EGPS were similarly ordered. No measure of IOP variability, when added to the prediction model that included mean follow-up IOP, age, central corneal thickness, vertical cup-disc ratio, and pattern SD, increased the C statistic by more than 0.007 in either cohort.

CONCLUSIONS AND RELEVANCE

Evidence from the OHTS and the EGPS suggests that long-term variability does not add substantial explanatory power to the prediction model as to which individuals with untreated ocular hypertension will develop POAG.

摘要

重要性

长期眼压(IOP)变异性对原发性开角型青光眼发展的贡献仍存在争议。

目的

评估长期 IOP 变异性数据是否能改善未经治疗的高眼压症患者发生原发性开角型青光眼(POAG)的预测模型。

设计、地点和参与者:这是对眼科高血压治疗研究(OHTS)观察组的 709 名参与者中的 709 名(281 名女性;58.7%)和欧洲青光眼预防研究(EGPS)安慰剂组的 397 名参与者中的 397 名(100%)进行的 2 项随机临床试验的事后二次分析,随访时间为 1994 年 2 月 28 日至 2002 年 6 月 1 日和 1997 年 1 月 1 日至 2003 年 9 月 30 日。数据分析于 2019 年 1 月 1 日至 2020 年 3 月 15 日完成。

暴露因素

POAG 发生的原始预测模型包括以下基线因素:年龄、IOP、中央角膜厚度、垂直杯盘比和模式标准差。本分析测试了用平均随访 IOP、IOP 的标准差、最大 IOP、IOP 范围或 IOP 的变异系数替代基线 IOP 是否会提高预测准确性。

主要结果和测量

C 统计量用于比较多变量标志 Cox 比例风险回归模型对 POAG 发生的预测准确性。

结果

OHTS 数据包括 709 名参与者中的 97 个 POAG 终点(416 名女性;25.0%的非洲裔美国人,69.1%的白人;平均[标准差]年龄为 55.7[9.59]岁;中位数[范围]随访时间为 6.9[0.96-8.15]年)。EGPS 数据包括 500 名安慰剂组参与者中的 44 个 POAG 终点(201 名女性;100%的白人;平均[标准差]年龄为 57.8[9.76]岁;中位数[范围]随访时间为 4.9[1.45-5.76]年)。原始预测模型的 C 统计量为 0.741。当在该预测模型中用随访 IOP 的某个指标替代基线 IOP 时,C 统计量如下:平均随访 IOP,0.784;最大 IOP,0.781;IOP 的标准差,0.745;IOP 范围,0.741;IOP 的变异系数,0.729。EGPS 的 C 统计量也同样排列。在 OHTS 和 EGPS 中,没有任何 IOP 变异性指标,当添加到包括平均随访 IOP、年龄、中央角膜厚度、垂直杯盘比和模式 SD 的预测模型中时,在任何队列中都没有增加超过 0.007 的 C 统计量。

结论和相关性

OHTS 和 EGPS 的证据表明,长期变异性并不能为预测模型提供实质性的解释能力,该模型预测哪些未经治疗的高眼压症患者会发展为 POAG。

相似文献

7
Visual Field Progression in the Ocular Hypertension Treatment Study.眼压升高治疗研究中的视野进展
Am J Ophthalmol. 2025 Mar;271:360-370. doi: 10.1016/j.ajo.2024.11.017. Epub 2024 Dec 6.

引用本文的文献

2
The impact of intraocular pressure fluctuations on the progression of glaucoma and associated factors.眼压波动对青光眼进展的影响及相关因素
Adv Ophthalmol Pract Res. 2025 Mar 12;5(2):142-148. doi: 10.1016/j.aopr.2025.03.002. eCollection 2025 May-Jun.
6
Risk Calculation in the Medication Arm of the Ocular Hypertension Treatment Study.药物治疗眼高压研究中的风险计算。
Ophthalmol Glaucoma. 2023 Nov-Dec;6(6):592-598. doi: 10.1016/j.ogla.2023.06.005. Epub 2023 Jun 17.
9
Incorrect Spelling in Author Byline.作者署名中的拼写错误。
JAMA Ophthalmol. 2020 Jul 1;138(7):804. doi: 10.1001/jamaophthalmol.2020.2626.

本文引用的文献

3
Intraocular Pressure Fluctuation: Is It Important?眼压波动:它重要吗?
J Ophthalmic Vis Res. 2018 Apr-Jun;13(2):170-174. doi: 10.4103/jovr.jovr_35_18.
7
Risk factors for visual field progression in treated glaucoma.青光眼治疗后视野进展的危险因素
Arch Ophthalmol. 2011 May;129(5):562-8. doi: 10.1001/archophthalmol.2011.72.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验