Suppr超能文献

术前利用临床资料和增强 CT 对纵隔和腹膜后神经节瘤与神经鞘瘤进行鉴别:建立多变量预测模型。

Preoperative differentiation of mediastinum and retroperitoneum ganglioneuroma from schwannoma with clinical data and enhanced CT: developing a multivariable prediction model.

机构信息

Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian Province 361004, China.

Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian Province 361004, China.

出版信息

Clin Radiol. 2023 Dec;78(12):e925-e933. doi: 10.1016/j.crad.2023.08.022. Epub 2023 Sep 20.

Abstract

AIM

To develop a multivariable prediction model for preoperative differentiation of ganglioneuroma (GN) from schwannoma in mediastinum and retroperitoneum based on clinical data and enhanced computed tomography (CT).

MATERIALS AND METHODS

This was a retrospective diagnostic study. Patients diagnosed with mediastinum or retroperitoneal GN or schwannoma at Zhongshan Hospital between July 2006 and March 2022 were divided into a training cohort and a validation cohort at a ratio of 7:3. Clinical information and CT features were collected. Histopathology was the reference standard for diagnosis. The model was developed using binary logistic regression. The predictive performance of the model was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

RESULTS

A total of 105 patients (47 men and 58 women; mean age of 41 ± 15 years) were enrolled. There were significant differences in symptoms (p=0.006), location (p=0.008), ratio of the craniocaudal diameter (CC) to the major axis on axial images (CC/M; p=0.025), ratio of the CC to the diameter on axial images (CC/D; p<0.001), density homogeneity (p=0.001), enhancement homogeneity (p<0.001), enhancement degree (p<0.001), venous phase CT attenuation value (V; p=0.011), and blood vessels changes (p=0.045) between GN and schwannoma. The area under the ROC curve (AUC) and accuracy in the validation cohort were 0.841 (95% confidence interval [CI] 0.672, 1.000) and 0.839 (95% CI: 0.674, 0.929), respectively. Calibration curves and DCA showed that the model was beneficial for patients.

CONCLUSION

The multivariable prediction model exhibited good predictive performance and may facilitate preoperative planning.

摘要

目的

基于临床资料和增强计算机断层扫描(CT),建立用于术前区分纵隔和腹膜后神经节瘤(GN)和神经鞘瘤的多变量预测模型。

材料和方法

这是一项回顾性诊断研究。在 2006 年 7 月至 2022 年 3 月期间,中山医院诊断为纵隔或腹膜后 GN 或神经鞘瘤的患者,按 7:3 的比例分为训练队列和验证队列。收集临床资料和 CT 特征。组织病理学为诊断的参考标准。使用二项逻辑回归建立模型。使用接受者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估模型的预测性能。

结果

共纳入 105 例患者(47 名男性和 58 名女性;平均年龄 41±15 岁)。GN 和神经鞘瘤之间在症状(p=0.006)、位置(p=0.008)、轴位图像上的头尾径(CC)与长轴比(CC/M;p=0.025)、轴位图像上的 CC 与直径比(CC/D;p<0.001)、密度均匀性(p=0.001)、增强均匀性(p<0.001)、增强程度(p<0.001)、静脉期 CT 衰减值(V;p=0.011)和血管变化(p=0.045)方面存在显著差异。验证队列的 ROC 曲线下面积(AUC)和准确率分别为 0.841(95%置信区间 [CI] 0.672,1.000)和 0.839(95%CI:0.674,0.929)。校准曲线和 DCA 表明,该模型有利于患者。

结论

多变量预测模型具有良好的预测性能,可能有助于术前计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验