Suppr超能文献

病毒宏基因组数据中样本交叉污染的检测。

Cont-ID: detection of sample cross-contamination in viral metagenomic data.

机构信息

Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium.

DNAVision, 6041, Gosselies, Belgium.

出版信息

BMC Biol. 2023 Oct 13;21(1):217. doi: 10.1186/s12915-023-01708-w.

Abstract

BACKGROUND

High-throughput sequencing (HTS) technologies completed by the bioinformatic analysis of the generated data are becoming an important detection technique for virus diagnostics. They have the potential to replace or complement the current PCR-based methods thanks to their improved inclusivity and analytical sensitivity, as well as their overall good repeatability and reproducibility. Cross-contamination is a well-known phenomenon in molecular diagnostics and corresponds to the exchange of genetic material between samples. Cross-contamination management was a key drawback during the development of PCR-based detection and is now adequately monitored in routine diagnostics. HTS technologies are facing similar difficulties due to their very high analytical sensitivity. As a single viral read could be detected in millions of sequencing reads, it is mandatory to fix a detection threshold that will be informed by estimated cross-contamination. Cross-contamination monitoring should therefore be a priority when detecting viruses by HTS technologies.

RESULTS

We present Cont-ID, a bioinformatic tool designed to check for cross-contamination by analysing the relative abundance of virus sequencing reads identified in sequence metagenomic datasets and their duplication between samples. It can be applied when the samples in a sequencing batch have been processed in parallel in the laboratory and with at least one specific external control called Alien control. Using 273 real datasets, including 68 virus species from different hosts (fruit tree, plant, human) and several library preparation protocols (Ribodepleted total RNA, small RNA and double-stranded RNA), we demonstrated that Cont-ID classifies with high accuracy (91%) viral species detection into (true) infection or (cross) contamination. This classification raises confidence in the detection and facilitates the downstream interpretation and confirmation of the results by prioritising the virus detections that should be confirmed.

CONCLUSIONS

Cross-contamination between samples when detecting viruses using HTS (Illumina technology) can be monitored and highlighted by Cont-ID (provided an alien control is present). Cont-ID is based on a flexible methodology relying on the output of bioinformatics analyses of the sequencing reads and considering the contamination pattern specific to each batch of samples. The Cont-ID method is adaptable so that each laboratory can optimise it before its validation and routine use.

摘要

背景

通过对生成数据的生物信息学分析完成的高通量测序(HTS)技术正成为病毒诊断的一种重要检测技术。由于其包容性和分析灵敏度提高,以及整体良好的重复性和再现性,它们有可能取代或补充当前基于 PCR 的方法。交叉污染是分子诊断中众所周知的现象,对应于样品之间遗传物质的交换。在基于 PCR 的检测开发过程中,交叉污染管理是一个关键缺陷,现在在常规诊断中得到了充分监测。由于其非常高的分析灵敏度,HTS 技术也面临着类似的困难。由于在数百万个测序读段中只能检测到一个病毒读段,因此必须设定一个检测阈值,该阈值将由估计的交叉污染情况告知。因此,在使用 HTS 技术检测病毒时,交叉污染监测应该是优先事项。

结果

我们提出了 Cont-ID,这是一种生物信息学工具,旨在通过分析序列宏基因组数据集中识别出的病毒测序读段的相对丰度及其在样品之间的重复情况来检查交叉污染。当一批样品在实验室中平行处理且至少有一个称为 Alien 对照的外部对照时,可以应用 Cont-ID。使用 273 个真实数据集,包括来自不同宿主(果树、植物、人类)的 68 种病毒和几种文库制备方案(核糖体缺失总 RNA、小 RNA 和双链 RNA),我们证明 Cont-ID 可以高度准确地(91%)将病毒物种检测分类为(真实)感染或(交叉)污染。这种分类提高了对检测的信心,并通过优先考虑应确认的病毒检测来简化结果的下游解释和确认。

结论

使用 HTS(Illumina 技术)检测病毒时,样品之间的交叉污染可以通过 Cont-ID 进行监测和突出显示(前提是存在 Alien 对照)。Cont-ID 基于一种灵活的方法,该方法依赖于测序读段的生物信息学分析结果,并考虑到每个样品批次特有的污染模式。Cont-ID 方法是可适应的,因此每个实验室都可以在验证和常规使用之前对其进行优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b91b/10576407/46cd6c740b29/12915_2023_1708_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验