Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
Radiology Department of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
BMC Complement Med Ther. 2023 Oct 13;23(1):361. doi: 10.1186/s12906-023-04170-x.
The primary objective of this study is to elucidate the molecular mechanism underlying the reversal of peritoneal fibrosis (PF) by Danshenol C, a natural compound derived from the traditional Chinese medicine Salvia miltiorrhiza. By comprehensively investigating the intricate interactions and signaling pathways involved in Danshenol C's therapeutic effects on PF, we aim to unveil novel insights into its pharmacological actions. This investigation holds the potential to revolutionize the clinical application of Salvia miltiorrhiza in traditional Chinese medicine, offering promising new avenues for the treatment of PF and paving the way for evidence-based therapeutic interventions.
Firstly, we utilized the YaTCM database to retrieve the structural formula of Danshenol C, while the SwissTargetPrediction platform facilitated the prediction of its potential drug targets. To gain insights into the genetic basis of PF, we acquired the GSE92453 dataset and GPL6480-9577 expression profile from the GEO database, followed by obtaining disease-related genes of PF from major disease databases. R software was then employed to screen for DEG associated with PF. To explore the intricate interactions between Danshenol C's active component targets, we utilized the String database and Cytoscape3.7.2 software to construct a PPI network. Further analysis in Cytoscape3.7.2 enabled the identification of core modules within the PPI network, elucidating key targets and molecular pathways critical to Danshenol C's therapeutic actions. Subsequently, we employed R to perform GO and KEGG pathway enrichment analyses, providing valuable insights into the functional implications and potential biological mechanisms of Danshenol C in the context of PF. To investigate the binding interactions between the core active components and key targets, we conducted docking studies using Chem3D, autoDock1.5.6, SYBYL2.0, and PYMOL2.4 software. We applied in vivo and in vitro experiments to prove that Danshenol C can improve PF. In order to verify the potential gene and molecular mechanism of Danshenol C to reverse PF, we used quantitative PCR, western blot, and apoptosis, ensuring robust and reliable verification of the results.
① Wogonin, sitosterol, and Signal Transducer and Activator of Transcription 5 (STAT5) emerged as the most significant constituents among the small-molecule active compounds and gene targets investigated. ②38 targets intersected with the disease, among which MAPK14, CASP3, MAPK8 and STAT3 may be the key targets; The results of GO and KEGG analysis showed that there was a correlation between inflammatory pathway and Apoptosis. ④Real-time PCR showed that the mRNA expressions of MAPK8 (JNK1), MAPK14 (P38) and STAT3 were significantly decreased after Danshenol C treatment (P < 0.05), while the mRNA expression of CASP3 was significantly increased (P < 0.05)⑤Western blot showed that protein expressions of CASP3 and MAPK14 were significantly increased (P < 0.05), while the expression of STAT3 and MAPK8 was decreased after Danshenol C treatment (P < 0.05). ⑥There was no significant difference in flow analysis of apoptosis among groups.
The findings suggest that Danshenol C may modulate crucial molecular pathways, including the MAPK, Apoptosis, Calcium signaling, JAK-STAT signaling, and TNF signaling pathways. This regulation is mediated through the modulation of core targets such as STAT3, MAPK14, MAPK8, CASP3, and others. By targeting these key molecular players, Danshenol C exhibits the potential to regulate cellular responses to chemical stress and inflammatory stimuli. The identification of these molecular targets and pathways represents a significant step forward in understanding the molecular basis of Danshenol C's therapeutic effects in PF. This preliminary exploration provides novel avenues for the development of anti-PF treatment strategies and the discovery of potential therapeutic agents. By targeting specific core targets and pathways, Danshenol C opens up new possibilities for the development of more effective and targeted drugs to combat PF. These findings have the potential to transform the landscape of PF treatment and offer valuable insights for future research and drug development endeavors.
本研究的主要目的是阐明丹参醇 C 逆转腹膜纤维化 (PF) 的分子机制,丹参醇 C 是一种源自传统中药丹参的天然化合物。通过全面研究丹参醇 C 对 PF 治疗作用的复杂相互作用和信号通路,我们旨在揭示其药理学作用的新见解。这项研究有可能彻底改变丹参在中药中的临床应用,为 PF 的治疗提供有前途的新途径,并为循证治疗干预铺平道路。
首先,我们利用 YaTCM 数据库检索丹参醇 C 的结构公式,而 SwissTargetPrediction 平台则有助于预测其潜在的药物靶点。为了深入了解 PF 的遗传基础,我们从 GEO 数据库中获取了 GSE92453 数据集和 GPL6480-9577 表达谱,并从主要疾病数据库中获取与 PF 相关的疾病基因。然后,我们使用 R 软件筛选与 PF 相关的 DEG。为了探索丹参醇 C 活性成分靶标之间的复杂相互作用,我们利用 String 数据库和 Cytoscape3.7.2 软件构建了一个 PPI 网络。在 Cytoscape3.7.2 中的进一步分析确定了 PPI 网络中的核心模块,揭示了丹参醇 C 治疗作用的关键靶点和分子途径。随后,我们使用 R 进行 GO 和 KEGG 通路富集分析,为丹参醇 C 在 PF 背景下的功能意义和潜在生物学机制提供了有价值的见解。为了研究核心活性成分和关键靶标之间的结合相互作用,我们使用 Chem3D、autoDock1.5.6、SYBYL2.0 和 PYMOL2.4 软件进行了对接研究。我们进行了体内和体外实验来证明丹参醇 C 可以改善 PF。为了验证丹参醇 C 逆转 PF 的潜在基因和分子机制,我们使用定量 PCR、western blot 和细胞凋亡进行了实验,以确保结果的稳健性和可靠性。
①木樨草素、谷甾醇和信号转导和转录激活因子 5 (STAT5)是研究的小分子活性化合物和基因靶标中最显著的成分。②38 个与疾病相互作用的靶点,其中 MAPK14、CASP3、MAPK8 和 STAT3 可能是关键靶点;GO 和 KEGG 分析结果表明,炎症途径和细胞凋亡之间存在相关性。④实时 PCR 显示,丹参醇 C 处理后 MAPK8 (JNK1)、MAPK14 (P38)和 STAT3 的 mRNA 表达显著降低(P < 0.05),而 CASP3 的 mRNA 表达显著增加(P < 0.05)。⑤western blot 显示,丹参醇 C 处理后 CASP3 和 MAPK14 的蛋白表达显著增加(P < 0.05),而 STAT3 和 MAPK8 的表达减少(P < 0.05)。⑥细胞凋亡的流式分析各组之间无明显差异。
这些发现表明,丹参醇 C 可能通过调节包括 MAPK、凋亡、钙信号、JAK-STAT 信号和 TNF 信号在内的关键分子途径来发挥作用。这种调节是通过调节核心靶标如 STAT3、MAPK14、MAPK8、CASP3 和其他靶标来实现的。通过针对这些关键分子靶点,丹参醇 C 表现出调节细胞对化学应激和炎症刺激的反应的潜力。鉴定这些分子靶点和途径是理解丹参醇 C 在 PF 中治疗作用的分子基础的重要一步。这项初步探索为开发抗 PF 治疗策略和发现潜在的治疗剂提供了新的途径。通过针对特定的核心靶标和途径,丹参醇 C 为开发更有效和有针对性的药物来对抗 PF 开辟了新的可能性。这些发现有可能彻底改变 PF 的治疗方法,并为未来的研究和药物开发工作提供宝贵的见解。