Bischoff Kay, Esen Cemal, Hellmann Ralf
Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, 63743 Aschaffenburg, Germany.
Applied Laser Technologies, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
Nanomaterials (Basel). 2023 Oct 2;13(19):2693. doi: 10.3390/nano13192693.
This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion. In addition to direct ultrasonic homogenization, high-energy ball milling is introduced for RLS, to produce stable nanosuspensions with a high fine fraction, and, above all, the absence of oversize particles. Whereas ultrasonic dispersion stagnates at particle sizes between 500 nm and 20 μm, even after 8 h, milled suspension contains a high proportion of finest particles with diameters below 100 nm, no agglomerates larger than 1 μm and a trimodal particle size distribution with the median at 50 nm already, after 100 min of milling. The precursor layers produced by doctor blade coating are examined for their quality by laser scanning microscopy. The surface roughness of such a dry film can be reduced from 1.26 μm to 88 nm by milling. Finally, the novel precursor is used for femtosecond RLS, to produce homogeneous, high-quality copper layers with a sheet resistance of 0.28Ω/sq and a copper mass concentration of 94.2%.
本论文展示并讨论了制备精细分散的氧化铜(II)纳米悬浮液作为还原激光烧结(RLS)前驱体的方法。由于团聚体的存在会干扰RLS的各个子过程,因此需要精细分散,并且必须通过测量方法识别超大颗粒。除了已有的用于对单个干燥颗粒成像的扫描电子显微镜方法外,本研究还应用了整体且在统计学上更具意义的激光衍射,并结合湿法分散中的动态图像分析。除了直接超声均质化外,还引入了高能球磨用于RLS,以制备具有高细颗粒分数且最重要的是不存在超大颗粒的稳定纳米悬浮液。超声分散在粒径介于500 nm至20μm之间时会停滞,即使经过8小时也是如此,而球磨悬浮液在球磨100分钟后就含有高比例的直径低于100 nm的最细颗粒,没有大于1μm的团聚体,并且具有中值为50 nm的三峰粒径分布。通过激光扫描显微镜检查刮刀法制备的前驱体层的质量。通过球磨,这种干膜的表面粗糙度可以从1.26μm降低到88 nm。最后,将这种新型前驱体用于飞秒RLS,以制备具有0.28Ω/sq的薄层电阻和94.2%的铜质量浓度的均匀、高质量铜层。