文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载黄酮类化合物的生物材料在骨缺损修复中的应用。

Flavonoid-Loaded Biomaterials in Bone Defect Repair.

机构信息

College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.

Jilin Agriculture Science and Technology College, Jilin 132101, China.

出版信息

Molecules. 2023 Sep 30;28(19):6888. doi: 10.3390/molecules28196888.


DOI:10.3390/molecules28196888
PMID:37836731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10574214/
Abstract

Skeletons play an important role in the human body, and can form gaps of varying sizes once damaged. Bone defect healing involves a series of complex physiological processes and requires ideal bone defect implants to accelerate bone defect healing. Traditional grafts are often accompanied by issues such as insufficient donors and disease transmission, while some bone defect implants are made of natural and synthetic polymers, which have characteristics such as good porosity, mechanical properties, high drug loading efficiency, biocompatibility and biodegradability. However, their antibacterial, antioxidant, anti-inflammatory and bone repair promoting abilities are limited. Flavonoids are natural compounds with various biological activities, such as antitumor, anti-inflammatory and analgesic. Their good anti-inflammatory, antibacterial and antioxidant activities make them beneficial for the treatment of bone defects. Several researchers have designed different types of flavonoid-loaded polymer implants for bone defects. These implants have good biocompatibility, and they can effectively promote the expression of angiogenesis factors such as VEGF and CD31, promote angiogenesis, regulate signaling pathways such as Wnt, p38, AKT, Erk and increase the levels of osteogenesis-related factors such as Runx-2, OCN, OPN significantly to accelerate the process of bone defect healing. This article reviews the effectiveness and mechanism of biomaterials loaded with flavonoids in the treatment of bone defects. Flavonoid-loaded biomaterials can effectively promote bone defect repair, but we still need to improve the overall performance of flavonoid-loaded bone repair biomaterials to improve the bioavailability of flavonoids and provide more possibilities for bone defect repair.

摘要

骨骼在人体中起着重要的作用,一旦受损,就会形成大小不一的间隙。骨缺损的愈合涉及一系列复杂的生理过程,需要理想的骨缺损植入物来加速骨缺损的愈合。传统的移植物常伴有供体不足和疾病传播等问题,而一些骨缺损植入物是由天然和合成聚合物制成的,具有良好的多孔性、机械性能、高载药效率、生物相容性和可降解性等特点。然而,它们的抗菌、抗氧化、抗炎和促进骨修复的能力有限。类黄酮是具有多种生物活性的天然化合物,如抗肿瘤、抗炎和镇痛。它们良好的抗炎、抗菌和抗氧化活性使其有益于治疗骨缺损。一些研究人员设计了不同类型的载黄酮聚合物植入物用于治疗骨缺损。这些植入物具有良好的生物相容性,能有效促进血管生成因子如 VEGF 和 CD31 的表达,促进血管生成,调节 Wnt、p38、AKT、Erk 等信号通路,并显著增加与成骨相关的因子如 Runx-2、OCN、OPN 的水平,从而加速骨缺损的愈合过程。本文综述了载黄酮生物材料在治疗骨缺损中的有效性和作用机制。载黄酮生物材料能有效促进骨缺损的修复,但我们仍需提高载黄酮骨修复生物材料的整体性能,以提高黄酮类化合物的生物利用度,为骨缺损修复提供更多的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/10574214/ea2900c2ad47/molecules-28-06888-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/10574214/fd93a2c7bd7b/molecules-28-06888-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/10574214/ea2900c2ad47/molecules-28-06888-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/10574214/fd93a2c7bd7b/molecules-28-06888-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/10574214/ea2900c2ad47/molecules-28-06888-g002.jpg

相似文献

[1]
Flavonoid-Loaded Biomaterials in Bone Defect Repair.

Molecules. 2023-9-30

[2]
Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential.

Adv Healthc Mater. 2014-10-21

[3]
Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides.

ACS Appl Mater Interfaces. 2022-8-31

[4]
Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

Int J Mol Sci. 2016-3-3

[5]
Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity.

Int J Nanomedicine. 2019-8-1

[6]
Antibacterial biomaterials in bone tissue engineering.

J Mater Chem B. 2021-3-21

[7]
ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration.

ACS Appl Mater Interfaces. 2020-8-19

[8]
Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3.

Molecules. 2023-6-28

[9]
Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect.

Acta Biomater. 2015-12-12

[10]
Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria, in Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration.

ACS Appl Mater Interfaces. 2019-8-15

引用本文的文献

[1]
Extrusion-Based 3D Printing of Rutin Using Aqueous Polyethylene Oxide Gel Inks.

Pharmaceutics. 2025-7-3

[2]
Nanotechnology in Osteogenesis and Inflammation Management: Metal-Organic Frameworks, Metal Complexes, and Biomaterials for Bone Restoration.

Biomedicines. 2025-6-30

[3]
Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study.

J Funct Biomater. 2025-5-13

[4]
Investigation of the osteogenic effects of ICA and ICSII on rat bone marrow mesenchymal stem cells.

Sci Rep. 2025-1-24

[5]
Effectiveness of purple leaves (Graptophyllum pictum L. Griff) and hydroxyapatite as socket preservation biomaterials.

J Oral Biol Craniofac Res. 2025

[6]
Effect of Dimethyloxalylglycine on Stem Cells Osteogenic Differentiation and Bone Tissue Regeneration-A Systematic Review.

Int J Mol Sci. 2024-3-30

本文引用的文献

[1]
Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective.

Int J Mol Sci. 2023-2-27

[2]
Baicalin Nanocomplexes with an -Forming Biomimetic Gel Implant for Repair of Calvarial Bone Defects Localized Sclerostin Inhibition.

ACS Appl Mater Interfaces. 2023-2-22

[3]
Naringin Release from a Nano-Hydroxyapatite/Collagen Scaffold Promotes Osteogenesis and Bone Tissue Reconstruction.

Polymers (Basel). 2022-8-10

[4]
Osteogenic Effect of Fisetin Doping in Bioactive Glass/Poly(caprolactone) Hybrid Scaffolds.

ACS Omega. 2022-6-21

[5]
Angiogenic and osteogenic effects of flavonoids in bone regeneration.

Biotechnol Bioeng. 2022-9

[6]
Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery.

Bioact Mater. 2022-5-26

[7]
Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects.

Front Bioeng Biotechnol. 2022-5-4

[8]
Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering.

Bioact Mater. 2021-10-26

[9]
Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in vitro.

Colloids Surf B Biointerfaces. 2022-4

[10]
Multilayered mucoadhesive hydrogel films based on Ocimum basilicum seed mucilage/thiolated alginate/dopamine-modified hyaluronic acid and PDA coating for sublingual administration of nystatin.

Int J Biol Macromol. 2022-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索