Suppr超能文献

制备用于高效可见光光催化的BiOCl纳米片/FeOCl纳米纺锤体异质结构

Fabricating BiOCl Nanoflake/FeOCl Nanospindle Heterostructures for Efficient Visible-Light Photocatalysis.

作者信息

Guo Heng, Deng Yangzhou, Yin Haoyong, Liu Juanjuan, Zou Shihui

机构信息

College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China.

Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

出版信息

Molecules. 2023 Oct 6;28(19):6949. doi: 10.3390/molecules28196949.

Abstract

Fabricating heterostructures with abundant interfaces and delicate nanoarchitectures is an attractive approach for optimizing photocatalysts. Herein, we report the facile synthesis of BiOCl nanoflake/FeOCl nanospindle heterostructures through a solution chemistry method at room temperature. Characterizations, including XRD, SEM, TEM, EDS, and XPS, were employed to investigate the synthesized materials. The results demonstrate that the in situ reaction between the Bi precursors and the surface Cl of FeOCl enabled the bounded nucleation and growth of BiOCl on the surface of FeOCl nanospindles. Stable interfacial structures were established between BiOCl nanoflakes and FeOCl nanospindles using Cl as the bridge. Regulating the Bi-to-Fe ratios allowed for the optimization of the BiOCl/FeOCl interface, thereby facilitating the separation of photogenerated carriers and accelerating the photocatalytic degradation of RhB. The BiOCl/FeOCl heterostructures with an optimal composition of 15% BiOCl exhibited ~90 times higher visible-light photocatalytic activity than FeOCl. Based on an analysis of the band structures and reactive oxygen species, we propose an S-scheme mechanism to elucidate the significantly enhanced photocatalytic performance observed in the BiOCl/FeOCl heterostructures.

摘要

构建具有丰富界面和精细纳米结构的异质结构是优化光催化剂的一种有吸引力的方法。在此,我们报道了通过室温下的溶液化学方法简便合成BiOCl纳米片/FeOCl纳米纺锤体异质结构。采用XRD、SEM、TEM、EDS和XPS等表征手段对合成材料进行研究。结果表明,Bi前驱体与FeOCl表面Cl之间的原位反应使得BiOCl在FeOCl纳米纺锤体表面受限成核并生长。以Cl为桥梁,在BiOCl纳米片和FeOCl纳米纺锤体之间建立了稳定的界面结构。调节Bi与Fe的比例可优化BiOCl/FeOCl界面,从而促进光生载流子的分离并加速RhB的光催化降解。具有15% BiOCl最佳组成的BiOCl/FeOCl异质结构的可见光光催化活性比FeOCl高约90倍。基于能带结构和活性氧物种的分析,我们提出了一种S型机制来解释在BiOCl/FeOCl异质结构中观察到的显著增强的光催化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239b/10574461/b6de612a332c/molecules-28-06949-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验