Suppr超能文献

使用合成二维骨骼数据集的无视角跆拳道动作识别

Viewpoint-Agnostic Taekwondo Action Recognition Using Synthesized Two-Dimensional Skeletal Datasets.

作者信息

Luo Chenglong, Kim Sung-Woo, Park Hun-Young, Lim Kiwon, Jung Hoeryong

机构信息

Division of Mechanical and Aerospace Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.

Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.

出版信息

Sensors (Basel). 2023 Sep 23;23(19):8049. doi: 10.3390/s23198049.

Abstract

Issues of fairness and consistency in Taekwondo poomsae evaluation have often occurred due to the lack of an objective evaluation method. This study proposes a three-dimensional (3D) convolutional neural network-based action recognition model for an objective evaluation of Taekwondo poomsae. The model exhibits robust recognition performance regardless of variations in the viewpoints by reducing the discrepancy between the training and test images. It uses 3D skeletons of poomsae unit actions collected using a full-body motion-capture suit to generate synthesized two-dimensional (2D) skeletons from desired viewpoints. The 2D skeletons obtained from diverse viewpoints form the training dataset, on which the model is trained to ensure consistent recognition performance regardless of the viewpoint. The performance of the model was evaluated against various test datasets, including projected 2D skeletons and RGB images captured from diverse viewpoints. Comparison of the performance of the proposed model with those of previously reported action recognition models demonstrated the superiority of the proposed model, underscoring its effectiveness in recognizing and classifying Taekwondo poomsae actions.

摘要

由于缺乏客观的评估方法,跆拳道品势评估中的公平性和一致性问题经常出现。本研究提出了一种基于三维(3D)卷积神经网络的动作识别模型,用于对跆拳道品势进行客观评估。该模型通过减少训练图像和测试图像之间的差异,无论视角如何变化都能展现出强大的识别性能。它使用全身动作捕捉套装收集的品势单元动作的3D骨架,从期望的视角生成合成二维(2D)骨架。从不同视角获得的2D骨架构成训练数据集,在该数据集上对模型进行训练,以确保无论视角如何都能有一致的识别性能。该模型的性能针对各种测试数据集进行了评估,包括从不同视角投影的2D骨架和RGB图像。将所提出模型的性能与先前报道的动作识别模型的性能进行比较,证明了所提出模型的优越性,突出了其在识别和分类跆拳道品势动作方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b684/10575175/8e73ddc1bbf7/sensors-23-08049-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验