Suppr超能文献

基于时间扭曲运动轮廓构建的动作图像对跆拳道单元动作进行动作识别

Action Recognition of Taekwondo Unit Actions Using Action Images Constructed with Time-Warped Motion Profiles.

作者信息

Lim Junghwan, Luo Chenglong, Lee Seunghun, Song Young Eun, Jung Hoeryong

机构信息

Department of Motion, Torooc Co., Ltd., Seoul 04585, Republic of Korea.

Department of Mechanical Engineering, Konkuk University, Seoul 05029, Republic of Korea.

出版信息

Sensors (Basel). 2024 Apr 18;24(8):2595. doi: 10.3390/s24082595.

Abstract

Taekwondo has evolved from a traditional martial art into an official Olympic sport. This study introduces a novel action recognition model tailored for Taekwondo unit actions, utilizing joint-motion data acquired via wearable inertial measurement unit (IMU) sensors. The utilization of IMU sensor-measured motion data facilitates the capture of the intricate and rapid movements characteristic of Taekwondo techniques. The model, underpinned by a conventional convolutional neural network (CNN)-based image classification framework, synthesizes action images to represent individual Taekwondo unit actions. These action images are generated by mapping joint-motion profiles onto the RGB color space, thus encapsulating the motion dynamics of a single unit action within a solitary image. To further refine the representation of rapid movements within these images, a time-warping technique was applied, adjusting motion profiles in relation to the velocity of the action. The effectiveness of the proposed model was assessed using a dataset compiled from 40 Taekwondo experts, yielding remarkable outcomes: an accuracy of 0.998, a precision of 0.983, a recall of 0.982, and an F1 score of 0.982. These results underscore this time-warping technique's contribution to enhancing feature representation, as well as the proposed method's scalability and effectiveness in recognizing Taekwondo unit actions.

摘要

跆拳道已从一种传统武术发展成为一项正式的奥林匹克运动。本研究引入了一种专门针对跆拳道单元动作的新型动作识别模型,该模型利用通过可穿戴惯性测量单元(IMU)传感器获取的关节运动数据。利用IMU传感器测量的运动数据有助于捕捉跆拳道技术特有的复杂快速动作。该模型以基于传统卷积神经网络(CNN)的图像分类框架为基础,合成动作图像以表示单个跆拳道单元动作。这些动作图像是通过将关节运动轮廓映射到RGB颜色空间生成的,从而在单个图像中封装单个单元动作的运动动态。为了进一步优化这些图像中快速动作的表示,应用了时间规整技术,根据动作速度调整运动轮廓。使用从40名跆拳道专家收集的数据集评估了所提出模型的有效性,得出了显著结果:准确率为0.998,精确率为0.983,召回率为0.982,F1分数为0.982。这些结果强调了这种时间规整技术对增强特征表示的贡献,以及所提出方法在识别跆拳道单元动作方面的可扩展性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70b0/11055144/6b3c8b609704/sensors-24-02595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验