Suppr超能文献

一种基于深度学习的安全路由协议,用于避免车载自组网中的黑洞攻击。

A Deep-Learning-Based Secure Routing Protocol to Avoid Blackhole Attacks in VANETs.

作者信息

Amalia Amalia, Pramitarini Yushintia, Perdana Ridho Hendra Yoga, Shim Kyusung, An Beongku

机构信息

Department of Software and Communications Engineering in Graduate School, Hongik University, Sejong City 30016, Republic of Korea.

School of Computer Engineering and Applied Mathematics, Hankyong National University, Anseong City 17579, Republic of Korea.

出版信息

Sensors (Basel). 2023 Oct 2;23(19):8224. doi: 10.3390/s23198224.

Abstract

Vehicle ad hoc networks (VANETs) are a vital part of intelligent transportation systems (ITS), offering a variety of advantages from reduced traffic to increased road safety. Despite their benefits, VANETs remain vulnerable to various security threats, including severe blackhole attacks. In this paper, we propose a deep-learning-based secure routing (DLSR) protocol using a deep-learning-based clustering (DLC) protocol to establish a secure route against blackhole attacks. The main features and contributions of this paper are as follows. First, the DLSR protocol utilizes deep learning (DL) at each node to choose secure routing or normal routing while establishing secure routes. Additionally, we can identify the behavior of malicious nodes to determine the best possible next hop based on its fitness function value. Second, the DLC protocol is considered an underlying structure to enhance connectivity between nodes and reduce control overhead. Third, we design a deep neural network (DNN) model to optimize the fitness function in both DLSR and DLC protocols. The DLSR protocol considers parameters such as remaining energy, distance, and hop count, while the DLC protocol considers cosine similarity, cosine distance, and the node's remaining energy. Finally, from the performance results, we evaluate the performance of the proposed routing and clustering protocol in the viewpoints of packet delivery ratio, routing delay, control overhead, packet loss ratio, and number of packet losses. Additionally, we also exploit the impact of the mobility model such as reference point group mobility (RPGM) and random waypoint (RWP) on the network metrics.

摘要

车载自组织网络(VANETs)是智能交通系统(ITS)的重要组成部分,具有从减少交通拥堵到提高道路安全等诸多优势。尽管有这些好处,但VANETs仍然容易受到各种安全威胁,包括严重的黑洞攻击。在本文中,我们提出了一种基于深度学习的安全路由(DLSR)协议,该协议使用基于深度学习的聚类(DLC)协议来建立抵御黑洞攻击的安全路由。本文的主要特点和贡献如下。首先,DLSR协议在每个节点利用深度学习(DL)在建立安全路由时选择安全路由或正常路由。此外,我们可以识别恶意节点的行为,根据其适应度函数值确定最佳的下一跳。其次,DLC协议被视为一种底层结构,用于增强节点之间的连接性并减少控制开销。第三,我们设计了一个深度神经网络(DNN)模型来优化DLSR和DLC协议中的适应度函数。DLSR协议考虑剩余能量、距离和跳数等参数,而DLC协议考虑余弦相似度、余弦距离和节点的剩余能量。最后,从性能结果来看,我们从数据包交付率、路由延迟、控制开销、数据包丢失率和数据包丢失数量等方面评估了所提出的路由和聚类协议的性能。此外,我们还研究了诸如参考点组移动性(RPGM)和随机路点(RWP)等移动模型对网络指标的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0037/10575003/b55f61d304d0/sensors-23-08224-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验