Suppr超能文献

集群内容缓存:一种用于提高无蜂窝大规模多输入多输出网络能源效率的深度强化学习方法。

Cluster Content Caching: A Deep Reinforcement Learning Approach to Improve Energy Efficiency in Cell-Free Massive Multiple-Input Multiple-Output Networks.

作者信息

Tan Fangqing, Peng Yuan, Liu Qiang

机构信息

Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin 541004, China.

College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Sensors (Basel). 2023 Oct 7;23(19):8295. doi: 10.3390/s23198295.

Abstract

With the explosive growth of micro-video applications, the transmission burden of fronthaul and backhaul links is increasing, and meanwhile, a lot of energy consumption is also generated. For reducing energy consumption and transmission delay burden, we propose a cell-free massive multiple-input multiple-output (CF-mMIMO) system in which the cache on the access point (AP) is used to reduce the load on the link. In this paper, a total energy efficiency (EE) model of a cache-assisted CF-mMIMO system is established. When optimizing EE, forming the co-operation cluster is critical. Therefore, we propose an energy-efficient joint design of content caching, AP clustering, and low-resolution digital-to-analog converter (DAC) in a cache-assisted CF-mMIMO network based on deep reinforcement learning. This scheme can effectively cache content in APs and select the appropriate DAC resolution. Then, taking into account the channel state information and user equipment (UE)'s content request preference, a deep deterministic policy gradient algorithm is used to jointly optimize the cache strategy, AP clustering, and DAC resolution decisions. Simulation results show that the energy efficiency of the proposed scheme is 4% higher than that of other schemes without the resolution optimization and is much higher than that of the only AP clustering without the joint design of content caching and channel quality.

摘要

随着微视频应用的爆炸式增长,前传和回传链路的传输负担不断增加,与此同时,还产生了大量能耗。为了降低能耗和传输延迟负担,我们提出了一种无小区大规模多输入多输出(CF-mMIMO)系统,其中接入点(AP)上的缓存用于减轻链路上的负载。本文建立了一个缓存辅助CF-mMIMO系统的总能量效率(EE)模型。在优化能量效率时,形成协作簇至关重要。因此,我们基于深度强化学习,在缓存辅助CF-mMIMO网络中提出了一种内容缓存、AP聚类和低分辨率数模转换器(DAC)的节能联合设计。该方案可以有效地在AP中缓存内容并选择合适的DAC分辨率。然后,考虑到信道状态信息和用户设备(UE)的内容请求偏好,使用深度确定性策略梯度算法对缓存策略、AP聚类和DAC分辨率决策进行联合优化。仿真结果表明,所提方案的能量效率比其他未进行分辨率优化的方案高4%,并且远高于仅进行AP聚类而未进行内容缓存和信道质量联合设计的方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac22/10574842/ddb3f6d7abc9/sensors-23-08295-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验