Suppr超能文献

基于高阶神经网络的植物工厂微气候环境多模型非线性自适应解耦控制

High-Order Neural-Network-Based Multi-Model Nonlinear Adaptive Decoupling Control for Microclimate Environment of Plant Factory.

作者信息

Wang Yonggang, Chen Ziqi, Jiang Yingchun, Liu Tan

机构信息

College of Information and Electronic Engineering, Shenyang Agricultural University, Shenyang 110866, China.

College of Engineering, Shenyang Agricultural University, Shenyang 110866, China.

出版信息

Sensors (Basel). 2023 Oct 8;23(19):8323. doi: 10.3390/s23198323.

Abstract

Plant factory is an important field of practice in smart agriculture which uses highly sophisticated equipment for precision regulation of the environment to ensure crop growth and development efficiently. Environmental factors, such as temperature and humidity, significantly impact crop production in a plant factory. Given the inherent complexities of dynamic models associated with plant factory environments, including strong coupling, strong nonlinearity and multi-disturbances, a nonlinear adaptive decoupling control approach utilizing a high-order neural network is proposed which consists of a linear decoupling controller, a nonlinear decoupling controller and a switching function. In this paper, the parameters of the controller depend on the generalized minimum variance control rate, and an adaptive algorithm is presented to deal with uncertainties in the system. In addition, a high-order neural network is utilized to estimate the unmolded nonlinear terms, consequently mitigating the impact of nonlinearity on the system. The simulation results show that the mean error and standard error of the traditional controller for temperature control are 0.3615 and 0.8425, respectively. In contrast, the proposed control strategy has made significant improvements in both indicators, with results of 0.1655 and 0.6665, respectively. For humidity control, the mean error and standard error of the traditional controller are 0.1475 and 0.441, respectively. In comparison, the proposed control strategy has greatly improved on both indicators, with results of 0.0221 and 0.1541, respectively. The above results indicate that even under complex conditions, the proposed control strategy is capable of enabling the system to quickly track set values and enhance control performance. Overall, precise temperature and humidity control in plant factories and smart agriculture can enhance production efficiency, product quality and resource utilization.

摘要

植物工厂是智慧农业的一个重要实践领域,它使用高度精密的设备对环境进行精确调控,以确保作物高效生长和发育。温度和湿度等环境因素对植物工厂中的作物生产有显著影响。鉴于植物工厂环境相关动态模型固有的复杂性,包括强耦合、强非线性和多干扰,提出了一种利用高阶神经网络的非线性自适应解耦控制方法,该方法由线性解耦控制器、非线性解耦控制器和切换函数组成。本文中,控制器的参数取决于广义最小方差控制率,并提出了一种自适应算法来处理系统中的不确定性。此外,利用高阶神经网络估计未建模的非线性项,从而减轻非线性对系统的影响。仿真结果表明,传统温度控制器的平均误差和标准误差分别为0.3615和0.8425。相比之下,所提出的控制策略在这两个指标上都有显著改进,结果分别为0.1655和0.6665。对于湿度控制,传统控制器的平均误差和标准误差分别为0.1475和0.441。相比之下,所提出的控制策略在这两个指标上都有很大改进,结果分别为0.0221和0.1541。上述结果表明,即使在复杂条件下,所提出的控制策略也能使系统快速跟踪设定值并提高控制性能。总体而言,植物工厂和智慧农业中的精确温度和湿度控制可以提高生产效率、产品质量和资源利用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88e/10574998/4dab008cac61/sensors-23-08323-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验