Suppr超能文献

基于 RBF 网络的温室环境非线性自适应 PID 控制。

Nonlinear adaptive PID control for greenhouse environment based on RBF network.

机构信息

School of Information Engineering, Zhejiang Agriculture & Forestry University, Lin'an 311300, China.

出版信息

Sensors (Basel). 2012;12(5):5328-48. doi: 10.3390/s120505328. Epub 2012 Apr 26.

Abstract

This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

摘要

本文提出了一种混合控制策略,将径向基函数(RBF)网络与传统的比例、积分和微分(PID)控制器相结合,用于温室气候控制。针对影响温室气候的众多系统变量之间的非线性热质守恒定律模型进行了公式化。RBF 网络用于在线和自适应调整和识别所有 PID 增益参数。通过对设定值跟踪和干扰抑制的仿真,验证了所提出的神经 PID 控制方案。我们将所提出的自适应在线调整方法与使用遗传算法(GA)搜索最优增益参数的离线调整方案进行了比较。结果表明,所提出的策略具有良好的适应性、较强的鲁棒性和实时性,同时为复杂非线性温室气候控制系统实现了令人满意的控制性能,可为实际温室生产中的环境控制策略制定提供有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2fb/3386686/5771cadb2032/sensors-12-05328f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验