Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, 01897, Seoul, South Korea.
Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Seoul, South Korea.
Environ Res. 2024 Jan 1;240(Pt 2):117398. doi: 10.1016/j.envres.2023.117398. Epub 2023 Oct 12.
This study explored the use of multicylindrical dielectric barrier discharge (MC-DBD) plasma technology to eliminate diesel fuel contamination from the soil. This study also assessed the environmental impact of plasma-generated reactive species on soil properties, plant growth, and the safety of microbial and human skin cells using various analytical methods. MC-DBD plasma was characterized using the current-voltage analysis and optical emission spectroscopy (OES). Gas Fourier transform infrared spectroscopy was employed to detect reactive species, such as O, NO, NO, NO, and HNO in the plasma-treated air. The diesel fuel concentration in the soil was measured before and after plasma treatment using a gas chromatography-flame ionization detector. The efficacy of the MC-DBD plasma treatment was evaluated based on soil characteristics (pH and moisture), discharge parameters (power), and reactive species (O and NO). Using only power of 30 W, the MC-DBD achieved a 94.19% removal of diesel fuel from the soil and yielded an energy efficiency of 1.78 × 10 m/kWh within a 60-min treatment period. Neutral soil with a moisture content of 2% proved more effective in diesel fuel removal compared with acidic or alkaline soil with higher moisture content. O was the most efficient plasma-generated reactive species for diesel fuel removal and is involved in oxidation-induced fragmentation and volatilization. Overall, the potential of the MC-DBD plasma technology for remediating diesel fuel-contaminated soils is highlighted, and valuable insights for future applications are provided.
本研究探索了使用多圆柱介质阻挡放电(MC-DBD)等离子体技术消除土壤中的柴油燃料污染。本研究还使用各种分析方法评估了等离子体产生的活性物质对土壤特性、植物生长以及微生物和人体皮肤细胞安全性的环境影响。使用电流-电压分析和光谱发射(OES)对 MC-DBD 等离子体进行了表征。使用气体傅里叶变换红外光谱法检测了等离子体处理空气中的活性物质,如 O、NO、NO、NO 和 HNO。使用气相色谱-火焰离子化检测器测量了等离子体处理前后土壤中柴油燃料的浓度。根据土壤特性(pH 值和水分)、放电参数(功率)和活性物质(O 和 NO)评估 MC-DBD 等离子体处理的效果。仅使用 30 W 的功率,MC-DBD 就实现了 94.19%的土壤中柴油燃料的去除,在 60 分钟的处理时间内,能量效率为 1.78×10-4m3/kWh。中性土壤的水分含量为 2%时,比酸性或碱性土壤(水分含量较高)更有利于去除柴油燃料。O 是去除柴油燃料最有效的等离子体产生的活性物质,它参与氧化诱导的断裂和挥发。总的来说,MC-DBD 等离子体技术在修复柴油燃料污染土壤方面具有很大的潜力,并为未来的应用提供了有价值的见解。