NLP Department, HT Médica, C. Carmelo Torres 2, 23007 Jaén, Spain.
MRI Unit, Radiology Department, HT Médica, C. Carmelo Torres 2, 23007 Jaén, Spain.
Clin Radiol. 2024 Jan;79(1):e1-e7. doi: 10.1016/j.crad.2023.09.009. Epub 2023 Sep 27.
To facilitate the routine tasks performed by radiologists in their evaluation of breast radiology reports, by enhancing the communication of relevant results to referring physicians via a natural language processing (NLP)-based system to classify and prioritise Breast Imaging Reporting Data System (BI-RADS).
A NLP-based system was developed to classify and prioritise BI-RADS categories from breast ultrasound and mammogram reports, with the potential to streamline and speed up the standard procedures that radiologists must follow to evaluate and categorise breast imaging results. BI-RADS category extraction was divided into two specific tasks: (1) multi-label classification of BI-RADS categories (0-6) and (2) classification of high-priority (BI-RADS 0, 3, 4 and 5) and low priority (BI-RADS 1, 2, and 6) reports according to the previous BI-RADS assessment.
To develop the NLP tool, three different Bidirectional Encoder Representations from Transformers (BERT)-based models (XLM-RoBERTa, BETO, and Bio-BERT-Spanish) were trained and tested on three distinct corpora (containing only breast ultrasound reports, only mammogram reports, or both), and achieved an accuracy of 74.29-77.5% in detecting BI-RADS categories and 88.52-91.02% in prioritising reports.
The system designed can effectively classify all BI-RADS categories present in a single radiology report. In the clinical setting, such an automated tool can assist radiologists in evaluating breast radiology reports and decision-making tasks and enhance the speed of communicating priority BI-RADS reports to referring physicians.
通过基于自然语言处理(NLP)的系统增强与放射科医生沟通相关结果,从而对乳腺影像学报告中的 BI-RADS 进行分类和优先级排序,为放射科医生评估和分类乳腺影像学结果提供便利。
开发了一个基于 NLP 的系统,用于对乳腺超声和乳腺 X 线摄影报告进行 BI-RADS 分类和优先级排序,旨在简化和加快放射科医生必须遵循的标准程序。BI-RADS 类别提取分为两个特定任务:(1)BI-RADS 类别(0-6)的多标签分类,(2)根据先前的 BI-RADS 评估,对高优先级(BI-RADS 0、3、4 和 5)和低优先级(BI-RADS 1、2 和 6)报告进行分类。
为了开发 NLP 工具,我们在三个不同的语料库(仅包含乳腺超声报告、仅包含乳腺 X 线摄影报告或两者都包含)上对三个基于 BERT 的模型(XLM-RoBERTa、BETO 和 Bio-BERT-Spanish)进行了训练和测试,在检测 BI-RADS 类别方面达到了 74.29-77.5%的准确率,在优先报告方面达到了 88.52-91.02%的准确率。
所设计的系统可以有效地对单个放射学报告中的所有 BI-RADS 类别进行分类。在临床环境中,这种自动化工具可以协助放射科医生评估乳腺放射学报告和决策任务,并提高向主治医生传达优先 BI-RADS 报告的速度。