Suppr超能文献

将甲状腺结节特征纳入基于超声报告的大语言模型以进行自动ACR TI-RADS分类的附加价值。

The added value of including thyroid nodule features into large language models for automatic ACR TI-RADS classification based on ultrasound reports.

作者信息

López-Úbeda Pilar, Martín-Noguerol Teodoro, Ruiz-Vinuesa Alba, Luna Antonio

机构信息

NLP Department, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain.

MRI Unit, Radiology Department, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain.

出版信息

Jpn J Radiol. 2025 Apr;43(4):593-602. doi: 10.1007/s11604-024-01707-z. Epub 2024 Nov 25.

Abstract

OBJECTIVE

The ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) uses a score based on ultrasound (US) imaging to stratify the risk of nodule malignancy and recommend appropriate follow-up. This study aims to analyze US reports and explore how Natural Language Processing (NLP) leveraging Transformers models can classify ACR TI-RADS from text reports using the description of thyroid nodule features.

MATERIALS AND METHODS

This retrospective study evaluated 16,847 thyroid-free text reports from our institution. An automated system, followed by manual review by a radiologist, established baseline annotations by assigning ACR TI-RADS categories from 1 to 5. Two types of systems were evaluated and compared in the dataset. The first by performing a multiclass classification to detect the associated ACR TI-RADS, and the second by extracting thyroid nodule features from the textual reports and incorporating them into the classifier.

RESULTS

Our study showed that models enhanced with specific features systematically outperformed those without. Particularly, the BERTIN model, to which additional features were added, achieved the highest level of accuracy, with a score of 0.8426. Moreover, we found a correlation between the presence of punctate echogenic foci, a feature often linked to malignant thyroid lesions, and increased ACR TI-RADS scores.

CONCLUSIONS

The features of the thyroid nodules described in thyroid US reports, such as composition, echogenicity, shape, margin or echogenic foci, help the NLP classifier to predict the associated ACR TI-RADS most accurately.

摘要

目的

美国放射学会(ACR)甲状腺影像报告和数据系统(TI-RADS)使用基于超声(US)成像的评分来对结节恶性风险进行分层,并推荐适当的随访方案。本研究旨在分析超声报告,并探索利用Transformer模型的自然语言处理(NLP)如何根据甲状腺结节特征的描述从文本报告中对ACR TI-RADS进行分类。

材料与方法

这项回顾性研究评估了来自我们机构的16847份无甲状腺的文本报告。一个自动化系统,随后由放射科医生进行人工审核,通过分配1至5级的ACR TI-RADS类别来建立基线注释。在数据集中对两种类型的系统进行了评估和比较。第一种是通过进行多类分类来检测相关的ACR TI-RADS,第二种是从文本报告中提取甲状腺结节特征并将其纳入分类器。

结果

我们的研究表明,具有特定特征增强的模型在系统上优于没有这些特征的模型。特别是添加了额外特征的BERTIN模型,达到了最高的准确率,得分为0.8426。此外,我们发现点状强回声灶(一种常与恶性甲状腺病变相关的特征)的存在与ACR TI-RADS评分增加之间存在相关性。

结论

甲状腺超声报告中描述的甲状腺结节特征,如成分、回声、形状、边界或强回声灶,有助于NLP分类器最准确地预测相关的ACR TI-RADS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验