Suppr超能文献

利用欧式神经网络从核苷酸序列预测 3D RNA 结构。

Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks.

机构信息

Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.

Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.

出版信息

Biophys J. 2024 Sep 3;123(17):2671-2681. doi: 10.1016/j.bpj.2023.10.011. Epub 2023 Oct 14.

Abstract

Fast and accurate 3D RNA structure prediction remains a major challenge in structural biology, mostly due to the size and flexibility of RNA molecules, as well as the lack of diverse experimentally determined structures of RNA molecules. Unlike DNA structure, RNA structure is far less constrained by basepair hydrogen bonding, resulting in an explosion of potential stable states. Here, we propose a convolutional neural network that predicts all pairwise distances between residues in an RNA, using a recently described smooth parametrization of Euclidean distance matrices. We achieve high-accuracy predictions on RNAs up to 100 nt in length in fractions of a second, a factor of 10 faster than existing molecular dynamics-based methods. We also convert our coarse-grained machine learning output into an all-atom model using discrete molecular dynamics with constraints. Our proposed computational pipeline predicts all-atom RNA models solely from the nucleotide sequence. However, this method suffers from the same limitation as nucleic acid molecular dynamics: the scarcity of available RNA crystal structures for training.

摘要

快速准确的三维 RNA 结构预测仍然是结构生物学的主要挑战,主要原因是 RNA 分子的大小和灵活性,以及缺乏多样化的实验确定的 RNA 分子结构。与 DNA 结构不同,RNA 结构受碱基对氢键的限制要小得多,从而导致潜在稳定状态的爆炸式增长。在这里,我们提出了一种卷积神经网络,它使用最近描述的欧几里得距离矩阵的平滑参数化来预测 RNA 中所有残基之间的成对距离。我们在几分之一秒内就能实现高达 100 个核苷酸长度的 RNA 的高精度预测,比现有的基于分子动力学的方法快 10 倍。我们还使用带约束的离散分子动力学将我们的粗粒度机器学习输出转换为全原子模型。我们提出的计算流水线仅从核苷酸序列预测全原子 RNA 模型。然而,这种方法与核酸分子动力学有相同的局限性:可用于训练的 RNA 晶体结构稀缺。

相似文献

引用本文的文献

1
Transformers in RNA structure prediction: A review.RNA结构预测中的Transformer:综述
Comput Struct Biotechnol J. 2025 Mar 17;27:1187-1203. doi: 10.1016/j.csbj.2025.03.021. eCollection 2025.
3
RNA-Puzzles Round V: blind predictions of 23 RNA structures.RNA谜题第五轮:对23种RNA结构的盲测预测
Nat Methods. 2025 Feb;22(2):399-411. doi: 10.1038/s41592-024-02543-9. Epub 2024 Dec 2.
5
smFRET-assisted RNA structure prediction.单分子荧光共振能量转移辅助的RNA结构预测
Commun Inf Syst. 2024;24(3):163-179. doi: 10.4310/cis.241021213225. Epub 2024 Oct 21.
7
Machine learning tools advance biophysics.机器学习工具推动生物物理学发展。
Biophys J. 2024 Sep 3;123(17):E1-E3. doi: 10.1016/j.bpj.2024.07.036. Epub 2024 Aug 21.
8
Universal cold RNA phase transitions.通用冷 RNA 相变。
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2408313121. doi: 10.1073/pnas.2408313121. Epub 2024 Aug 16.
10

本文引用的文献

2
Geometric deep learning of RNA structure.RNA 结构的几何深度学习。
Science. 2021 Aug 27;373(6558):1047-1051. doi: 10.1126/science.abe5650.
3
Levenshtein Distance, Sequence Comparison and Biological Database Search.莱文斯坦距离、序列比较与生物数据库搜索。
IEEE Trans Inf Theory. 2021 Jun;67(6):3287-3294. doi: 10.1109/tit.2020.2996543. Epub 2020 May 21.
5
Direct Mapping of Higher-Order RNA Interactions by SHAPE-JuMP.通过 SHAPE-JuMP 进行高等 RNA 相互作用的直接作图。
Biochemistry. 2021 Jun 29;60(25):1971-1982. doi: 10.1021/acs.biochem.1c00270. Epub 2021 Jun 14.
6
RNA Vaccines: A Suitable Platform for Tackling Emerging Pandemics?RNA 疫苗:应对新出现的大流行病的合适平台?
Front Immunol. 2020 Dec 22;11:608460. doi: 10.3389/fimmu.2020.608460. eCollection 2020.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验