Suppr超能文献

构建阿尔茨海默病及相关痴呆的多领域风险模型。

The Construction of a Multidomain Risk Model of Alzheimer's Disease and Related Dementias.

机构信息

Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.

Department of Surgery, Duke University Medical Center, Durham, NC, USA.

出版信息

J Alzheimers Dis. 2023;96(2):535-550. doi: 10.3233/JAD-221292.

Abstract

BACKGROUND

Alzheimer's disease (AD) and related dementia (ADRD) risk is affected by multiple dependent risk factors; however, there is no consensus about their relative impact in the development of these disorders.

OBJECTIVE

To rank the effects of potentially dependent risk factors and identify an optimal parsimonious set of measures for predicting AD/ADRD risk from a larger pool of potentially correlated predictors.

METHODS

We used diagnosis record, survey, and genetic data from the Health and Retirement Study to assess the relative predictive strength of AD/ADRD risk factors spanning several domains: comorbidities, demographics/socioeconomics, health-related behavior, genetics, and environmental exposure. A modified stepwise-AIC-best-subset blanket algorithm was then used to select an optimal set of predictors.

RESULTS

The final predictive model was reduced to 10 features for AD and 19 for ADRD; concordance statistics were about 0.85 for one-year and 0.70 for ten-year follow-up. Depression, arterial hypertension, traumatic brain injury, cerebrovascular diseases, and the APOE4 proxy SNP rs769449 had the strongest individual associations with AD/ADRD risk. AD/ADRD risk-related co-morbidities provide predictive power on par with key genetic vulnerabilities.

CONCLUSION

Results confirm the consensus that circulatory diseases are the main comorbidities associated with AD/ADRD risk and show that clinical diagnosis records outperform comparable self-reported measures in predicting AD/ADRD risk. Model construction algorithms combined with modern data allows researchers to conserve power (especially in the study of disparities where disadvantaged groups are often grossly underrepresented) while accounting for a high proportion of AD/ADRD-risk-related population heterogeneity stemming from multiple domains.

摘要

背景

阿尔茨海默病(AD)和相关痴呆(ADRD)的风险受多种依存风险因素的影响;然而,对于这些疾病发展过程中这些因素的相对影响,目前尚无共识。

目的

对潜在依存风险因素的影响进行排序,并从大量可能相关的预测因子中,确定用于预测 AD/ADRD 风险的最佳简约测量集。

方法

我们使用健康与退休研究中的诊断记录、调查和遗传数据,评估跨越多个领域的 AD/ADRD 风险因素的相对预测强度:合并症、人口统计学/社会经济学、健康相关行为、遗传学和环境暴露。然后,使用改良的逐步 AIC-最佳子集覆盖算法来选择最佳的预测因子集。

结果

最终的预测模型简化为 AD 用 10 个特征,ADRD 用 19 个特征;一年和十年随访的一致性统计数据分别约为 0.85 和 0.70。抑郁、动脉高血压、创伤性脑损伤、脑血管疾病和 APOE4 代理 SNP rs769449 与 AD/ADRD 风险的个体关联最强。AD/ADRD 风险相关的合并症与关键遗传脆弱性提供了相当的预测能力。

结论

结果证实了循环系统疾病是与 AD/ADRD 风险相关的主要合并症的共识,并表明临床诊断记录在预测 AD/ADRD 风险方面优于可比的自我报告测量。模型构建算法与现代数据相结合,允许研究人员在考虑来自多个领域的 AD/ADRD 风险相关人群异质性的高比例的同时,节约电力(特别是在研究弱势群体严重代表性不足的差异时)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验