Ikura Ryohei, Kajimoto Kota, Park Junsu, Murayama Shunsuke, Fujiwara Yusei, Osaki Motofumi, Suzuki Tomohiro, Shirakawa Hidenori, Kitamura Yujiro, Takahashi Hiroaki, Ohashi Yasumasa, Obata Seiji, Harada Akira, Ikemoto Yuka, Nishina Yuta, Uetsuji Yasutomo, Matsuba Go, Takashima Yoshinori
Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
Forefront Research Center for Fundamental Sciences, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
ACS Polym Au. 2023 Sep 11;3(5):394-405. doi: 10.1021/acspolymersau.3c00010. eCollection 2023 Oct 11.
Practical applications like very thin stress-strain sensors require high strength, stretchability, and conductivity, simultaneously. One of the approaches is improving the toughness of the stress-strain sensing materials. Polymeric materials with movable cross-links in which the polymer chain penetrates the cavity of cyclodextrin (CD) demonstrate enhanced strength and stretchability, simultaneously. We designed two approaches that utilize elastomer nanocomposites with movable cross-links and carbon filler (ketjenblack, KB). One approach is mixing SC (a single movable cross-network material), a linear polymer (poly(ethyl acrylate), PEA), and KB to obtain their composite. The electrical resistance increases proportionally with tensile strain, leading to the application of this composite as a stress-strain sensor. The responses of this material are stable for over 100 loading and unloading cycles. The other approach is a composite made with KB and a movable cross-network elastomer for knitting dissimilar polymers (KP), where movable cross-links connect the CD-modified polystyrene (PSCD) and PEA. The obtained composite acts as a highly sensitive stress-strain sensor that exhibits an exponential increase in resistance with increasing tensile strain due to the polymer dethreading from the CD rings. The designed preparations of highly repeatable or highly responsive stress-strain sensors with good mechanical properties can help broaden their application in electrical devices.
像超薄应力应变传感器这样的实际应用需要同时具备高强度、拉伸性和导电性。其中一种方法是提高应力应变传感材料的韧性。聚合物链能穿透环糊精(CD)空腔的带有可移动交联键的聚合物材料,同时展现出增强的强度和拉伸性。我们设计了两种利用带有可移动交联键的弹性体纳米复合材料和碳填料(科琴黑,KB)的方法。一种方法是将SC(一种单一的可移动交联网络材料)、线性聚合物(聚丙烯酸乙酯,PEA)和KB混合以获得它们的复合材料。电阻随拉伸应变成比例增加,从而使这种复合材料可作为应力应变传感器。这种材料在100多个加载和卸载循环中的响应都是稳定的。另一种方法是用KB和一种用于编织不同聚合物的可移动交联网络弹性体(KP)制成的复合材料,其中可移动交联键连接了CD修饰的聚苯乙烯(PSCD)和PEA。所得到的复合材料可作为一种高灵敏度应力应变传感器,由于聚合物从CD环上解缠,其电阻随拉伸应变增加呈指数增长。所设计的具有良好机械性能的高度可重复或高响应性应力应变传感器的制备方法,有助于拓宽它们在电子器件中的应用。