Suppr超能文献

乳房重建的变革:人工智能在术前规划中的开创性作用。

Transforming breast reconstruction: the pioneering role of artificial intelligence in preoperative planning.

作者信息

Cevik Jevan, Seth Ishith, Rozen Warren M

机构信息

Department of Plastic and Reconstructive Surgery, Peninsula Health, Frankston, Victoria, Australia.

Peninsula Clinical School, Central Clinical School, Faculty of Medicine, Monash University, Frankston, Victoria, Australia.

出版信息

Gland Surg. 2023 Sep 25;12(9):1271-1275. doi: 10.21037/gs-23-265. Epub 2023 Sep 14.

Abstract

Autologous breast reconstruction surgery is a vital part of the recovery process for patients with breast cancer. While various reconstructive options exist, the deep inferior epigastric artery perforator (DIEP) flap is often favoured for its ability to closely mimic natural breast tissue. However, the complex vascular anatomy associated with the deep inferior epigastric artery (DIEA) presents challenges for surgeons during DIEP flap execution. Preoperative imaging, such as computed tomography angiography (CTA), is commonly used to understand vascular architecture and aid in selecting appropriate perforators. Conventional reporting of CTA scans is a labour-intensive process that can be challenging and requires specific expertise. The integration of artificial intelligence (AI) and machine learning (ML) algorithms in medical imaging has the potential to address these challenges. AI can enhance CTA through improved data acquisition, image post-processing, and potentially interpretation. By automating the perforator selection process, AI applications can significantly reduce the time spent on preoperative imaging analysis and potentially improve accuracy and reliability. While AI shows promise in optimizing efficiency, accuracy, and reliability in breast reconstruction planning, challenges and ethical considerations need to be addressed. This article explores the challenges, opportunities, and future directions of using AI in the preoperative planning of autologous breast reconstruction.

摘要

自体乳房重建手术是乳腺癌患者康复过程的重要组成部分。虽然存在多种重建选择,但腹壁下深动脉穿支(DIEP)皮瓣因其能够紧密模仿天然乳房组织的能力而常受青睐。然而,与腹壁下深动脉(DIEA)相关的复杂血管解剖结构给外科医生在实施DIEP皮瓣手术时带来了挑战。术前成像,如计算机断层血管造影(CTA),通常用于了解血管结构并帮助选择合适的穿支。传统的CTA扫描报告是一个劳动密集型过程,可能具有挑战性且需要特定的专业知识。将人工智能(AI)和机器学习(ML)算法整合到医学成像中有可能应对这些挑战。AI可以通过改进数据采集、图像后处理以及潜在的解读来增强CTA。通过自动化穿支选择过程,AI应用可以显著减少术前成像分析所花费的时间,并有可能提高准确性和可靠性。虽然AI在优化自体乳房重建规划的效率、准确性和可靠性方面显示出前景,但仍需应对挑战和考虑伦理问题。本文探讨了在自体乳房重建术前规划中使用AI的挑战、机遇和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7adf/10570966/8b4d95ae0be0/gs-12-09-1271-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验