Suppr超能文献

利用时空奇异值分解增强体内心脏光声信号特异性。

Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition.

机构信息

University of Wisconsin-Madison, Department of ECE, Madison, Wisconsin, United States.

University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medical Physics, United States.

出版信息

J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.046001.

Abstract

SIGNIFICANCE

Photoacoustic imaging (PAI) can be used to infer molecular information about myocardial health non-invasively in vivo using optical excitation at ultrasonic spatial resolution. For clinical and preclinical linear array imaging systems, conventional delay-and-sum (DAS) beamforming is typically used. However, DAS cardiac PA images are prone to artifacts such as diffuse quasi-static clutter with temporally varying noise-reducing myocardial signal specificity. Typically, multiple frame averaging schemes are utilized to improve the quality of cardiac PAI, which affects the spatial and temporal resolution and reduces sensitivity to subtle PA signal variation. Furthermore, frame averaging might corrupt myocardial oxygen saturation quantification due to the presence of natural cardiac wall motion. In this paper, a spatiotemporal singular value decomposition (SVD) processing algorithm is proposed to reduce DAS PAI artifacts and subsequent enhancement of myocardial signal specificity.

AIM

Demonstrate enhancement of PA signals from myocardial tissue compared to surrounding tissues and blood inside the left-ventricular (LV) chamber using spatiotemporal SVD processing with electrocardiogram (ECG) and respiratory signal (ECG-R) gated in vivo murine cardiac PAI.

APPROACH

In vivo murine cardiac PAI was performed by collecting single wavelength (850 nm) photoacoustic channel data on eight healthy mice. A three-dimensional (3D) volume of complex PAI data over a cardiac cycle was reconstructed using a custom ECG-R gating algorithm and DAS beamforming. Spatiotemporal SVD was applied on a two-dimensional Casorati matrix generated using the 3D volume of PAI data. The singular value spectrum (SVS) was then filtered to remove contributions from diffuse quasi-static clutter and random noise. Finally, SVD processed beamformed images were derived using filtered SVS and inverse SVD computations.

RESULTS

Qualitative comparison with DAS and minimum variance (MV) beamforming shows that SVD processed images had better myocardial signal specificity, contrast, and target detectability. DAS, MV, and SVD images were quantitatively evaluated by calculating contrast ratio (CR), generalized contrast-to-noise ratio (gCNR), and signal-to-noise ratio (SNR). Quantitative evaluations were done at three cardiac time points (during systole, at end-systole (ES), and during diastole) identified from co-registered ultrasound M-Mode image. Mean CR, gCNR, and SNR values of SVD images at ES were 245, 115.15, and 258.17 times higher than DAS images with statistical significance evaluated with one-way analysis of variance.

CONCLUSIONS

Our results suggest that significantly better-quality images can be realized using spatiotemporal SVD processing for in vivo murine cardiac PAI.

摘要

意义

光声成像是一种可以无创地在体内使用超声空间分辨率的光激发来推断心肌健康的分子信息的方法。对于临床和临床前线性阵列成像系统,通常使用传统的延迟和求和(DAS)波束形成。然而,DAS 心脏光声图像容易出现伪影,例如具有随时间变化的噪声降低的心肌信号特异性的扩散准静态杂波。通常,利用多帧平均方案来提高心脏光声成象的质量,这会影响空间和时间分辨率,并降低对微妙的光声信号变化的敏感性。此外,由于存在自然的心肌壁运动,帧平均可能会使心肌氧饱和度量化受到影响。在本文中,提出了一种时空奇异值分解(SVD)处理算法,以减少 DAS 光声成象伪影,并随后增强心肌信号特异性。

目的

使用时空 SVD 处理,与心电图(ECG)和呼吸信号(ECG-R)门控的体内鼠心脏光声成象相比,证明来自心肌组织的 PA 信号增强,与左心室(LV)室内的周围组织和血液相比。

方法

在八只健康小鼠上进行体内鼠心脏光声成象,采集单波长(850nm)光声通道数据。使用定制的 ECG-R 门控算法和 DAS 波束形成,重建了一个心脏周期的三维(3D)体积复杂光声数据。在使用 3D 体积的 PAI 数据生成的二维 Casorati 矩阵上应用时空 SVD。然后过滤奇异值谱(SVS)以去除扩散准静态杂波和随机噪声的贡献。最后,使用过滤的 SVS 和逆 SVD 计算导出 SVD 处理后的波束形成图像。

结果

与 DAS 和最小方差(MV)波束形成的定性比较表明,SVD 处理后的图像具有更好的心肌信号特异性、对比度和目标可检测性。使用计算对比度比(CR)、广义对比度噪声比(gCNR)和信噪比(SNR)对 DAS、MV 和 SVD 图像进行定量评估。在从配准的超声 M 型图像中识别的三个心脏时间点(收缩期、收缩末期(ES)和舒张期)上进行定量评估。用单因素方差分析评估统计学意义,SVD 图像在 ES 时的平均 CR、gCNR 和 SNR 值分别比 DAS 图像高 245、115.15 和 258.17 倍。

结论

我们的结果表明,使用时空 SVD 处理可以显著提高体内鼠心脏光声成象的图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eea3/8054608/601415028f2f/JBO-026-046001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验