Suppr超能文献

基于模型的深度学习低元线性阵列光声重建

Model-informed deep-learning photoacoustic reconstruction for low-element linear array.

作者信息

Paul Souradip, Lee S Alex, Zhao Shensheng, Chen Yun-Sheng

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.

Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.

出版信息

Photoacoustics. 2025 May 16;44:100732. doi: 10.1016/j.pacs.2025.100732. eCollection 2025 Aug.

Abstract

Photoacoustic tomography (PAT), widely applied using linear array ultrasound transducers for clinical and preclinical imaging, faces significant challenges due to sparse sensor arrangements and limited sensor pitch. These factors often compromise image quality, particularly in devices designed to have fewer sensors to reduce complexity and power consumption, such as wearable systems. Conventional reconstruction methods, including delay-and-sum and iterative model-based techniques, either lack accuracy or are computationally intensive. Recent advancements in deep learning offer promising improvements. In particular, model-based deep learning combines physics-informed priors with neural networks to enhance reconstruction quality and reduce computational demands. However, model matrix inversion during adjoint transformations presents computational challenges in model-based deep learning. To address the challenges, we introduce a simplified, efficient GE-CNN framework specifically tailored for linear array transducers. Our lightweight GE-CNN architecture significantly reduces computational demand, achieving a 4-fold reduction in model matrix size (2.09 GB for 32 elements vs. 8.38 GB for 128 elements) and accelerating processing by approximately 46.3 %, reducing the processing time from 7.88 seconds to 4.23 seconds. We rigorously evaluated this approach using synthetic models, experimental phantoms, and in-vivo rat liver imaging, highlighting the improved reconstruction performance with minimal hardware.

摘要

光声断层扫描(PAT)在临床和临床前成像中广泛使用线性阵列超声换能器,但由于传感器布置稀疏和传感器间距有限,面临着重大挑战。这些因素常常会影响图像质量,特别是在为减少复杂性和功耗而设计的传感器较少的设备中,如可穿戴系统。传统的重建方法,包括延迟求和法和基于迭代模型的技术,要么缺乏准确性,要么计算量大。深度学习的最新进展带来了有希望的改进。特别是,基于模型的深度学习将物理先验知识与神经网络相结合,以提高重建质量并减少计算需求。然而,伴随变换过程中的模型矩阵求逆在基于模型的深度学习中带来了计算挑战。为了应对这些挑战,我们引入了一种专门为线性阵列换能器量身定制的简化、高效的GE-CNN框架。我们的轻量级GE-CNN架构显著降低了计算需求,模型矩阵大小减少了4倍(32个元件时为2.09GB,128个元件时为8.38GB),处理速度加快了约46.3%,处理时间从7.88秒减少到4.23秒。我们使用合成模型、实验体模和大鼠肝脏体内成像对该方法进行了严格评估,突出了在硬件最少的情况下改进的重建性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0419/12152870/a63e955cc626/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验