School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
Thurber Engineering Ltd., Cambridge, ON, Canada.
Environ Pollut. 2023 Dec 15;339:122761. doi: 10.1016/j.envpol.2023.122761. Epub 2023 Oct 14.
The goal of the work was to contribute to a unified approach to assessing the risk to human health of soil ingestion, for contaminated sites with elevated [Ni]. Robust relationships between in vitro bioaccessibility and in vivo bioavailability of Ni in various soils, with mechanistic understanding, would enable site-specific assessments of human exposure through soil ingestion. Four soils (three ultramafic Brunisols with geogenic Ni and one Organic soil with anthropogenic Ni) were sieved into PS < 10 μm, 10-41 μm, 41-70 μm, 70-105 μm, 105-150 μm, and 150-250 μm, the [Ni] for which ranged from 560 to 103000 mg/kg. Mass fraction-adjusted [Ni] (SBRC gastric) for each soil fraction was similar whether calculated for all particles <250 μm or <150 μm %Ni ranged from 3% to 16% of [Ni] and %Ni (accumulated Ni in urine, kidneys, and small intestine of Sprague Dawley rats gavaged with a soil) ranged from 0% to 0.49%. The correlation between these two measurements was weak (R = 0.06). Multiple linear dose response relationships attributing variation in %Ni to %Ni plus soil physicochemical parameters known to influence trace element availability in soils were developed. As many soil properties measured in this study were highly correlated, ridge regression enabled a predictive relationship where the effect of each parameter was its true contribution to variation in %Ni. Using a ridge constant (k) of 0.012, %Ni could be predicted from %Ni adjusted for soil absorptive entities (OrgC, and Fe oxides (negative coefficients)) and soil pH (positive coefficient). %Ni predicted from this relationship was very close to 1:1 with the observed %Ni except at the lowest observed values which were lower than predicted. This study shows that as the conditions increasingly favour soil Ni solubility, more of the Ni was bioavailable; this generalization was true regardless of particle size or soil origin.
这项工作的目的是为评估受污染场地土壤摄入对人类健康的风险提供一种统一的方法,这些场地的 [Ni] 含量较高。在各种土壤中,具有机制理解的体外生物可及性与体内生物有效性之间的稳健关系,将使人们能够通过土壤摄入对人体暴露进行特定地点的评估。将四种土壤(三种具有原生镍的超镁铁质 Brunisols 和一种具有人为镍的有机土壤)筛分为 PS <10 μm、10-41 μm、41-70 μm、70-105 μm、105-150 μm 和 150-250 μm,其 [Ni] 含量范围为 560 至 103000 mg/kg。对于每个土壤部分,无论是根据所有 <250 μm 或 <150 μm 的颗粒计算,还是根据质量分数调整的 [Ni](SBRC 胃),都相似。土壤部分的 Ni 质量分数调整值(用灌胃含土壤的 Sprague Dawley 大鼠的尿液、肾脏和小肠中累积的 Ni 计算)范围为 3%至 16%,而 Ni(累积的 Ni 在尿液、肾脏和 Sprague Dawley 大鼠的小肠中)范围为 0%至 0.49%。这两个测量值之间的相关性很弱(R = 0.06)。开发了归因于土壤中微量元素可利用性的已知土壤物理化学参数的变异的多种线性剂量响应关系。由于本研究中测量的许多土壤特性高度相关,脊回归使得能够建立一种预测关系,其中每个参数的效果是其对 Ni 变化的真实贡献。使用 0.012 的脊常数(k),可以根据调整了土壤吸收实体(OrgC 和 Fe 氧化物(负系数))和土壤 pH(正系数)的 Ni 来预测 Ni%。除了观察到的最低值低于预测值外,从该关系预测的 Ni%与观察到的 Ni%非常接近 1:1。这项研究表明,随着条件越来越有利于土壤 Ni 的溶解度,更多的 Ni 变得具有生物有效性;这一概括无论粒径或土壤来源如何都是正确的。