Suppr超能文献

用于长效钠金属电池的硅酸钠钐固体电解质中的电化学诱导晶态到非晶化转变

Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries.

作者信息

Sun Ge, Lou Chenjie, Yi Boqian, Jia Wanqing, Wei Zhixuan, Yao Shiyu, Lu Ziheng, Chen Gang, Shen Zexiang, Tang Mingxue, Du Fei

机构信息

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China.

Center for High Pressure Science and Technology Advanced Research (HPSTAR), 100193, Beijing, China.

出版信息

Nat Commun. 2023 Oct 16;14(1):6501. doi: 10.1038/s41467-023-42308-0.

Abstract

Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline NaSmSiO SE which features high room-temperature ionic conductivity of 2.9 × 10 S cm and a low activation energy of 0.15 eV. All-solid-state symmetric cell with NaSmSiO delivers excellent cycling life over 800 h at 0.15 mA h cm and a high critical current density of 1.4 mA cm. Such excellent electrochemical performance is attributed to an electrochemically induced in-situ crystalline-to-amorphous (CTA) transformation propagating from the interface to the bulk during repeated deposition and stripping of sodium, which leads to faster ionic transport and superior interfacial properties. Impressively, the Na|NaSmSiO|NaV(PO) sodium metal batteries achieve a remarkable cycling performance over 4000 cycles (6 months) with no capacity loss. These results not only identify NaSmSiO as a promising SE but also emphasize the potential of the CTA transition as a promising mechanism towards long-lasting SSBs.

摘要

开发具有高离子电导率、良好界面兼容性以及与电极共形接触的固体电解质(SE)材料对于固态钠金属电池(SSB)至关重要。在此,我们报道了一种晶体NaSmSiO SE,其具有2.9×10 S cm的高室温离子电导率和0.15 eV的低活化能。具有NaSmSiO的全固态对称电池在0.15 mA h cm下具有超过800 h的优异循环寿命以及1.4 mA cm的高临界电流密度。如此优异的电化学性能归因于在钠的反复沉积和剥离过程中,从界面向本体传播的电化学诱导原位晶态到非晶态(CTA)转变,这导致更快的离子传输和优异的界面性能。令人印象深刻的是,Na|NaSmSiO|NaV(PO)钠金属电池在超过4000次循环(6个月)中实现了卓越的循环性能且无容量损失。这些结果不仅确定NaSmSiO为一种有前景的SE,还强调了CTA转变作为实现持久SSB的一种有前景机制的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1248/10579357/d658a90c6f41/41467_2023_42308_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验